/** If ex is a simple combination of Relations, then return that combination, else return null. */ private Expression sim(Expr ex) { while (ex instanceof ExprUnary) { ExprUnary u = (ExprUnary) ex; if (u.op != ExprUnary.Op.NOOP && u.op != ExprUnary.Op.EXACTLYOF) break; ex = u.sub; } if (ex instanceof ExprBinary) { ExprBinary b = (ExprBinary) ex; if (b.op == ExprBinary.Op.ARROW || b.op == ExprBinary.Op.PLUS || b.op == ExprBinary.Op.JOIN) { Expression left = sim(b.left); if (left == null) return null; Expression right = sim(b.right); if (right == null) return null; if (b.op == ExprBinary.Op.ARROW) return left.product(right); if (b.op == ExprBinary.Op.PLUS) return left.union(right); else return left.join(right); } } if (ex instanceof ExprConstant) { switch (((ExprConstant) ex).op) { case EMPTYNESS: return Expression.NONE; } } if (ex == Sig.NONE) return Expression.NONE; if (ex == Sig.SIGINT) return Expression.INTS; if (ex instanceof Sig) return sol.a2k((Sig) ex); if (ex instanceof Field) return sol.a2k((Field) ex); return null; }
/** Allocate relations for SubsetSig top-down. */ private Expression allocateSubsetSig(SubsetSig sig) throws Err { // We must not visit the same SubsetSig more than once, so if we've been here already, then // return the old value right away Expression sum = sol.a2k(sig); if (sum != null && sum != Expression.NONE) return sum; // Recursively form the union of all parent expressions TupleSet ts = factory.noneOf(1); for (Sig parent : sig.parents) { Expression p = (parent instanceof PrimSig) ? sol.a2k(parent) : allocateSubsetSig((SubsetSig) parent); ts.addAll(sol.query(true, p, false)); if (sum == null) sum = p; else sum = sum.union(p); } // If subset is exact, then just use the "sum" as is if (sig.exact) { sol.addSig(sig, sum); return sum; } // Allocate a relation for this subset sig, then bound it rep.bound("Sig " + sig + " in " + ts + "\n"); Relation r = sol.addRel(sig.label, null, ts); sol.addSig(sig, r); // Add a constraint that it is INDEED a subset of the union of its parents sol.addFormula(r.in(sum), sig.isSubset); return r; }
/** * Returns a relational encoding of the problem. * * @return a relational encoding of the problem. */ public Formula rules() { final List<Formula> rules = new ArrayList<Formula>(); rules.add(x.function(queen, num)); rules.add(y.function(queen, num)); final Variable i = Variable.unary("n"); final Variable q1 = Variable.unary("q1"), q2 = Variable.unary("q2"); // at most one queen in each row: all i: num | lone x.i rules.add(x.join(i).lone().forAll(i.oneOf(num))); // at most one queen in each column: all i: num | lone y.i rules.add(y.join(i).lone().forAll(i.oneOf(num))); // no queen in a blocked position: all q: Queen | q.x->q.y !in blocked rules.add(q1.join(x).product(q1.join(y)).intersection(blocked).no().forAll(q1.oneOf(queen))); // at most one queen on each diagonal // all q1: Queen, q2: Queen - q1 | // let xu = prevs[q2.x] + prevs[q1.x], // xi = prevs[q2.x] & prevs[q1.x], // yu = prevs[q2.y] + prevs[q1.y], // yi = prevs[q2.y] & prevs[q1.y] | // #(xu - xi) != #(yu - yi) final Expression ordClosure = ord.closure(); final Expression q2xPrevs = ordClosure.join(q2.join(x)), q1xPrevs = ordClosure.join(q1.join(x)); final Expression q2yPrevs = ordClosure.join(q2.join(y)), q1yPrevs = ordClosure.join(q1.join(y)); final IntExpression xDiff = (q2xPrevs.union(q1xPrevs)).difference(q2xPrevs.intersection(q1xPrevs)).count(); final IntExpression yDiff = (q2yPrevs.union(q1yPrevs)).difference(q2yPrevs.intersection(q1yPrevs)).count(); rules.add(xDiff.eq(yDiff).not().forAll(q1.oneOf(queen).and(q2.oneOf(queen.difference(q1))))); return Formula.and(rules); }
/** * Returns the conjecture theorem_3_8_5. * * @return theorem_3_8_5 */ public final Formula theorem385() { // all c: curve, p, q, r: point | // c->p->q->r in between => // incident.c - q in q.(p.(c.between)) + ((c.between).r).q final Variable c = Variable.unary("C"); final Variable p = Variable.unary("P"); final Variable q = Variable.unary("Q"); final Variable r = Variable.unary("R"); final Formula f0 = c.product(p).product(q).product(r).in(between); final Expression e0 = q.join(p.join(c.join(between))); final Expression e1 = c.join(between).join(r).join(q); final Formula f1 = incident.join(c).difference(q).in(e0.union(e1)); return f0.implies(f1) .forAll(p.oneOf(point).and(q.oneOf(point)).and(r.oneOf(point)).and(c.oneOf(curve))); }
/** Allocate relations for nonbuiltin PrimSigs bottom-up. */ private Expression allocatePrimSig(PrimSig sig) throws Err { // Recursively allocate all children expressions, and form the union of them Expression sum = null; for (PrimSig child : sig.children()) { Expression childexpr = allocatePrimSig(child); if (sum == null) { sum = childexpr; continue; } // subsigs are disjoint sol.addFormula(sum.intersection(childexpr).no(), child.isSubsig); sum = sum.union(childexpr); } TupleSet lower = lb.get(sig).clone(), upper = ub.get(sig).clone(); if (sum == null) { // If sig doesn't have children, then sig should make a fresh relation for itself sum = sol.addRel(sig.label, lower, upper); } else if (sig.isAbstract == null) { // If sig has children, and sig is not abstract, then create a new relation to act as the // remainder. for (PrimSig child : sig.children()) { // Remove atoms that are KNOWN to be in a subsig; // it's okay to mistakenly leave some atoms in, since we will never solve for the // "remainder" relation directly; // instead, we union the remainder with the children, then solve for the combined solution. // (Thus, the more we can remove, the more efficient it gets, but it is not crucial for // correctness) TupleSet childTS = sol.query(false, sol.a2k(child), false); lower.removeAll(childTS); upper.removeAll(childTS); } sum = sum.union(sol.addRel(sig.label + " remainder", lower, upper)); } sol.addSig(sig, sum); return sum; }