/**
   * Returns a relational encoding of the problem.
   *
   * @return a relational encoding of the problem.
   */
  public Formula rules() {
    final List<Formula> rules = new ArrayList<Formula>();

    rules.add(x.function(queen, num));
    rules.add(y.function(queen, num));

    final Variable i = Variable.unary("n");
    final Variable q1 = Variable.unary("q1"), q2 = Variable.unary("q2");

    // at most one queen in each row: all i: num | lone x.i

    rules.add(x.join(i).lone().forAll(i.oneOf(num)));

    // at most one queen in each column: all i: num | lone y.i
    rules.add(y.join(i).lone().forAll(i.oneOf(num)));

    // no queen in a blocked position:  all q: Queen | q.x->q.y !in blocked
    rules.add(q1.join(x).product(q1.join(y)).intersection(blocked).no().forAll(q1.oneOf(queen)));

    // at most one queen on each diagonal
    //		all q1: Queen, q2: Queen - q1 |
    //		let xu = prevs[q2.x] + prevs[q1.x],
    //		     xi =  prevs[q2.x] & prevs[q1.x],
    //                yu = prevs[q2.y] + prevs[q1.y],
    //                yi = prevs[q2.y] & prevs[q1.y] |
    //		#(xu - xi) != #(yu - yi)
    final Expression ordClosure = ord.closure();
    final Expression q2xPrevs = ordClosure.join(q2.join(x)), q1xPrevs = ordClosure.join(q1.join(x));
    final Expression q2yPrevs = ordClosure.join(q2.join(y)), q1yPrevs = ordClosure.join(q1.join(y));

    final IntExpression xDiff =
        (q2xPrevs.union(q1xPrevs)).difference(q2xPrevs.intersection(q1xPrevs)).count();
    final IntExpression yDiff =
        (q2yPrevs.union(q1yPrevs)).difference(q2yPrevs.intersection(q1yPrevs)).count();

    rules.add(xDiff.eq(yDiff).not().forAll(q1.oneOf(queen).and(q2.oneOf(queen.difference(q1)))));

    return Formula.and(rules);
  }
Example #2
0
 /** Allocate relations for nonbuiltin PrimSigs bottom-up. */
 private Expression allocatePrimSig(PrimSig sig) throws Err {
   // Recursively allocate all children expressions, and form the union of them
   Expression sum = null;
   for (PrimSig child : sig.children()) {
     Expression childexpr = allocatePrimSig(child);
     if (sum == null) {
       sum = childexpr;
       continue;
     }
     // subsigs are disjoint
     sol.addFormula(sum.intersection(childexpr).no(), child.isSubsig);
     sum = sum.union(childexpr);
   }
   TupleSet lower = lb.get(sig).clone(), upper = ub.get(sig).clone();
   if (sum == null) {
     // If sig doesn't have children, then sig should make a fresh relation for itself
     sum = sol.addRel(sig.label, lower, upper);
   } else if (sig.isAbstract == null) {
     // If sig has children, and sig is not abstract, then create a new relation to act as the
     // remainder.
     for (PrimSig child : sig.children()) {
       // Remove atoms that are KNOWN to be in a subsig;
       // it's okay to mistakenly leave some atoms in, since we will never solve for the
       // "remainder" relation directly;
       // instead, we union the remainder with the children, then solve for the combined solution.
       // (Thus, the more we can remove, the more efficient it gets, but it is not crucial for
       // correctness)
       TupleSet childTS = sol.query(false, sol.a2k(child), false);
       lower.removeAll(childTS);
       upper.removeAll(childTS);
     }
     sum = sum.union(sol.addRel(sig.label + " remainder", lower, upper));
   }
   sol.addSig(sig, sum);
   return sum;
 }