public static List<Double> cbrt(List<Double> data) { List<Double> t_list = new ArrayList<Double>(data.size()); for (double i : data) { t_list.add(Math.cbrt(i)); } return t_list; }
/** * Solve the cubic whose coefficients are in the <code>eqn</code> array and place the non-complex * roots into the <code>res</code> array, returning the number of roots. The cubic solved is * represented by the equation: eqn = {c, b, a, d} dx^3 + ax^2 + bx + c = 0 A return value of -1 * is used to distinguish a constant equation, which may be always 0 or never 0, from an equation * which has no zeroes. * * @param eqn the specified array of coefficients to use to solve the cubic equation * @param res the array that contains the non-complex roots resulting from the solution of the * cubic equation * @return the number of roots, or -1 if the equation is a constant * @since 1.3 */ public static int solveCubic(double eqn[], double res[]) { // From Graphics Gems: // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c final double d = eqn[3]; if (d == 0) { return QuadCurve2D.solveQuadratic(eqn, res); } /* normal form: x^3 + Ax^2 + Bx + C = 0 */ final double A = eqn[2] / d; final double B = eqn[1] / d; final double C = eqn[0] / d; // substitute x = y - A/3 to eliminate quadratic term: // x^3 +Px + Q = 0 // // Since we actually need P/3 and Q/2 for all of the // calculations that follow, we will calculate // p = P/3 // q = Q/2 // instead and use those values for simplicity of the code. double sq_A = A * A; double p = 1.0 / 3 * (-1.0 / 3 * sq_A + B); double q = 1.0 / 2 * (2.0 / 27 * A * sq_A - 1.0 / 3 * A * B + C); /* use Cardano's formula */ double cb_p = p * p * p; double D = q * q + cb_p; final double sub = 1.0 / 3 * A; int num; if (D < 0) { /* Casus irreducibilis: three real solutions */ // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method double phi = 1.0 / 3 * Math.acos(-q / Math.sqrt(-cb_p)); double t = 2 * Math.sqrt(-p); if (res == eqn) { eqn = Arrays.copyOf(eqn, 4); } res[0] = (t * Math.cos(phi)); res[1] = (-t * Math.cos(phi + Math.PI / 3)); res[2] = (-t * Math.cos(phi - Math.PI / 3)); num = 3; for (int i = 0; i < num; ++i) { res[i] -= sub; } } else { // Please see the comment in fixRoots marked 'XXX' before changing // any of the code in this case. double sqrt_D = Math.sqrt(D); double u = Math.cbrt(sqrt_D - q); double v = -Math.cbrt(sqrt_D + q); double uv = u + v; num = 1; double err = 1200000000 * ulp(abs(uv) + abs(sub)); if (iszero(D, err) || within(u, v, err)) { if (res == eqn) { eqn = Arrays.copyOf(eqn, 4); } res[1] = -(uv / 2) - sub; num = 2; } // this must be done after the potential Arrays.copyOf res[0] = uv - sub; } if (num > 1) { // num == 3 || num == 2 num = fixRoots(eqn, res, num); } if (num > 2 && (res[2] == res[1] || res[2] == res[0])) { num--; } if (num > 1 && res[1] == res[0]) { res[1] = res[--num]; // Copies res[2] to res[1] if needed } return num; }