/** Creates the total selector's set for get all the possible rules */ private Complejo hazSelectores(Dataset train) { Complejo almacenSelectores; int nClases = train.getnclases(); almacenSelectores = new Complejo(nClases); // Aqui voy a almacenar los selectores (numVariable,operador,valor) Attribute[] atributos = null; int num_atributos, type; Vector nominalValues; atributos = Attributes.getAttributes(); num_atributos = Attributes.getNumAttributes(); Selector s; for (int i = 0; i < train.getnentradas(); i++) { type = atributos[i].getType(); switch (type) { case 0: // NOMINAL nominalValues = atributos[i].getNominalValuesList(); // System.out.print("{"); for (int j = 0; j < nominalValues.size(); j++) { // System.out.print ((String)nominalValues.elementAt(j)+" "); s = new Selector(i, 0, (String) nominalValues.elementAt(j), true); // [atr,op,valor] // incluimos tb los valores en double para facilitar algunas funciones s.setValor((double) j); almacenSelectores.addSelector(s); // s.print(); } // System.out.println("}"); break; } // System.out.println(num_atributos); } return almacenSelectores; }
/** * Checks if a node is legitimate. A node is illegitimate if its hamming distance to a pruned node * is 1 (this is, the node is a child of a previously pruned node). * * @param f node to check its legitimacy * @return true if the node is legitimate, false otherwise. */ private boolean legitimate(boolean f[]) { boolean feas = true; for (int i = 0; i < pruned.size() && feas; i++) { if (hamming(pruned.elementAt(i), f) == 1) feas = false; } return feas; }
/** * Joins two vectors * * @param a First vector * @param b Second vector * @return The joint of both vectors */ public static Vector<Integer> unionVectores(Vector<Integer> a, Vector<Integer> b) { int i; for (i = 0; i < b.size(); i++) { if (a.contains(new Integer((Integer) (b.elementAt(i)))) == false) { a.addElement(b.elementAt(i)); } } return a; } // end-method
private String classificationOutput( myDataset dataset, int ex, int data[][], int classData[], int infoAttr[], Vector<Rule> contenedor, int nClases) { int j, k, l; boolean match; double tmp1, tmp2; int pos = 0, classPredicted; double Waip; int ejemplo[] = new int[data[0].length]; for (j = 0; j < ejemplo.length; j++) { if (dataset.isMissing(ex, j)) ejemplo[j] = -1; else ejemplo[j] = dataset.valueExample(ex, j); } classPredicted = -1; Waip = 0; /*Search a match of the example (following by the container)*/ for (j = contenedor.size() - 1; j >= 0; j--) { match = true; for (k = 0; k < contenedor.elementAt(j).getRule().length && match; k++) { if (ejemplo[contenedor.elementAt(j).getiCondition(k).getAttribute()] != contenedor.elementAt(j).getiCondition(k).getValue()) { match = false; } } if (match) { tmp1 = Double.NEGATIVE_INFINITY; for (l = 0; l < nClases; l++) { tmp2 = 0; for (k = 0; k < contenedor.elementAt(j).getRule().length; k++) { tmp2 += RuleSet.computeWeightEvidence( data, classData, contenedor.elementAt(j).getiCondition(k), l, infoAttr); } if (tmp2 > tmp1) { tmp1 = tmp2; pos = l; } } if (tmp1 > Waip) { classPredicted = pos; Waip = tmp1; } } } if (classPredicted == -1) return "Unclassified"; return dataset.getOutputValue(classPredicted); }
/** Recursive method for ABB */ private void abb(boolean feat[]) { boolean[] child; double measure; threshold = data.measureIEP(feat); for (int i = 0; i < cardinalidadCto(feat); i++) { child = removeOne(feat, i); measure = data.measureIEP(child); if (legitimate(child) && measure < threshold) { if (measure < data.measureIEP(features)) { // we keep the best found in 'features' System.arraycopy(child, 0, features, 0, child.length); } abb(child); } else { // we prune this node pruned.add(child); } } }
/** * Computes the trueHShaffer distribution from a given parameter. * * @param k K parameter * @param n M value * @return The trueHShaffer distribution */ public static Vector<Integer> trueHShaffer(int k) { Vector<Integer> number; int j; Vector<Integer> tmp, tmp2; int p; number = new Vector<Integer>(); tmp = new Vector<Integer>(); if (k <= 1) { number.addElement(new Integer(0)); } else { for (j = 1; j <= k; j++) { tmp = trueHShaffer(k - j); tmp2 = new Vector<Integer>(); for (p = 0; p < tmp.size(); p++) { tmp2.addElement(((Integer) (tmp.elementAt(p))).intValue() + (int) combinatoria(2, j)); } number = unionVectores(number, tmp2); } } return number; } // end-method
/** * Obtain all exhaustive comparisons possible from an array of indexes * * @param indices A verctos of indexes. * @return A vector with vectors containing all the possible relations between the indexes */ @SuppressWarnings("unchecked") public static Vector<Vector<Relation>> obtainExhaustive(Vector<Integer> indices) { Vector<Vector<Relation>> result = new Vector<Vector<Relation>>(); int i, j, k; String binario; boolean[] number = new boolean[indices.size()]; Vector<Integer> ind1, ind2; Vector<Relation> set = new Vector<Relation>(); Vector<Vector<Relation>> res1, res2; Vector<Relation> temp; Vector<Relation> temp2; Vector<Relation> temp3; ind1 = new Vector<Integer>(); ind2 = new Vector<Integer>(); temp = new Vector<Relation>(); temp2 = new Vector<Relation>(); temp3 = new Vector<Relation>(); for (i = 0; i < indices.size(); i++) { for (j = i + 1; j < indices.size(); j++) { set.addElement( new Relation( ((Integer) indices.elementAt(i)).intValue(), ((Integer) indices.elementAt(j)).intValue())); } } if (set.size() > 0) result.addElement(set); for (i = 1; i < (int) (Math.pow(2, indices.size() - 1)); i++) { Arrays.fill(number, false); ind1.removeAllElements(); ind2.removeAllElements(); temp.removeAllElements(); temp2.removeAllElements(); temp3.removeAllElements(); binario = Integer.toString(i, 2); for (k = 0; k < number.length - binario.length(); k++) { number[k] = false; } for (j = 0; j < binario.length(); j++, k++) { if (binario.charAt(j) == '1') number[k] = true; } for (j = 0; j < number.length; j++) { if (number[j] == true) { ind1.addElement(new Integer(((Integer) indices.elementAt(j)).intValue())); } else { ind2.addElement(new Integer(((Integer) indices.elementAt(j)).intValue())); } } res1 = obtainExhaustive(ind1); res2 = obtainExhaustive(ind2); for (j = 0; j < res1.size(); j++) { result.addElement(new Vector<Relation>((Vector<Relation>) res1.elementAt(j))); } for (j = 0; j < res2.size(); j++) { result.addElement(new Vector<Relation>((Vector<Relation>) res2.elementAt(j))); } for (j = 0; j < res1.size(); j++) { temp = (Vector<Relation>) ((Vector<Relation>) res1.elementAt(j)).clone(); for (k = 0; k < res2.size(); k++) { temp2 = (Vector<Relation>) temp.clone(); temp3 = (Vector<Relation>) ((Vector<Relation>) res2.elementAt(k)).clone(); if (((Relation) temp2.elementAt(0)).i < ((Relation) temp3.elementAt(0)).i) { temp2.addAll((Vector<Relation>) temp3); result.addElement(new Vector<Relation>(temp2)); } else { temp3.addAll((Vector<Relation>) temp2); result.addElement(new Vector<Relation>(temp3)); } } } } for (i = 0; i < result.size(); i++) { if (((Vector<Relation>) result.elementAt(i)).toString().equalsIgnoreCase("[]")) { result.removeElementAt(i); i--; } } for (i = 0; i < result.size(); i++) { for (j = i + 1; j < result.size(); j++) { if (((Vector<Relation>) result.elementAt(i)) .toString() .equalsIgnoreCase(((Vector<Relation>) result.elementAt(j)).toString())) { result.removeElementAt(j); j--; } } } return result; } // end-method
/** * This method runs the multiple comparison tests * * @param code A value to codify which post-hoc methods apply * @param results Array with the results of the methods * @param algorithmName Array with the name of the methods employed * @return A string with the contents of the test in LaTeX format */ private static String runMultiple(double[][] results, String algorithmName[]) { int i, j, k; int posicion; double mean[][]; MultiplePair orden[][]; MultiplePair rank[][]; boolean encontrado; int ig; double sum; boolean visto[]; Vector<Integer> porVisitar; double Rj[]; double friedman; double sumatoria = 0; double termino1, termino2, termino3; double iman; boolean vistos[]; int pos, tmp, counter; String cad; double maxVal; double Pi[]; double ALPHAiHolm[]; double ALPHAiShaffer[]; String ordenAlgoritmos[]; double ordenRankings[]; int order[]; double adjustedP[][]; double SE; boolean parar; Vector<Integer> indices = new Vector<Integer>(); Vector<Vector<Relation>> exhaustiveI = new Vector<Vector<Relation>>(); boolean[][] cuadro; double minPi, tmpPi, maxAPi, tmpAPi; Relation[] parejitas; Vector<Integer> T; int Tarray[]; DecimalFormat nf4 = (DecimalFormat) DecimalFormat.getInstance(); nf4.setMaximumFractionDigits(4); nf4.setMinimumFractionDigits(0); DecimalFormatSymbols dfs = nf4.getDecimalFormatSymbols(); dfs.setDecimalSeparator('.'); nf4.setDecimalFormatSymbols(dfs); DecimalFormat nf6 = (DecimalFormat) DecimalFormat.getInstance(); nf6.setMaximumFractionDigits(6); nf6.setMinimumFractionDigits(0); nf6.setDecimalFormatSymbols(dfs); String out = ""; int nDatasets = Configuration.getNDatasets(); Iman = Configuration.isIman(); Nemenyi = Configuration.isNemenyi(); Bonferroni = Configuration.isBonferroni(); Holm = Configuration.isHolm(); Hoch = Configuration.isHochberg(); Hommel = Configuration.isHommel(); Scha = Configuration.isShaffer(); Berg = Configuration.isBergman(); mean = new double[nDatasets][algorithmName.length]; // Maximize performance if (Configuration.getObjective() == 1) { /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] = results[j][i]; } } } // Minimize performance else { double maxValue = Double.MIN_VALUE; /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { if (results[j][i] > maxValue) { maxValue = results[j][i]; } mean[i][j] = (-1.0 * results[j][i]); } } for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] += maxValue; } } } /*We use the pareja structure to compute and order rankings*/ orden = new MultiplePair[nDatasets][algorithmName.length]; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { orden[i][j] = new MultiplePair(j, mean[i][j]); } Arrays.sort(orden[i]); } /*building of the rankings table per algorithms and data sets*/ rank = new MultiplePair[nDatasets][algorithmName.length]; posicion = 0; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { encontrado = false; for (k = 0; k < algorithmName.length && !encontrado; k++) { if (orden[i][k].indice == j) { encontrado = true; posicion = k + 1; } } rank[i][j] = new MultiplePair(posicion, orden[i][posicion - 1].valor); } } /*In the case of having the same performance, the rankings are equal*/ for (i = 0; i < nDatasets; i++) { visto = new boolean[algorithmName.length]; porVisitar = new Vector<Integer>(); Arrays.fill(visto, false); for (j = 0; j < algorithmName.length; j++) { porVisitar.removeAllElements(); sum = rank[i][j].indice; visto[j] = true; ig = 1; for (k = j + 1; k < algorithmName.length; k++) { if (rank[i][j].valor == rank[i][k].valor && !visto[k]) { sum += rank[i][k].indice; ig++; porVisitar.add(new Integer(k)); visto[k] = true; } } sum /= (double) ig; rank[i][j].indice = sum; for (k = 0; k < porVisitar.size(); k++) { rank[i][((Integer) porVisitar.elementAt(k)).intValue()].indice = sum; } } } /*compute the average ranking for each algorithm*/ Rj = new double[algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Rj[i] = 0; for (j = 0; j < nDatasets; j++) { Rj[i] += rank[j][i].indice / ((double) nDatasets); } } /*Print the average ranking per algorithm*/ out += "\n\nAverage ranks obtained by applying the Friedman procedure\n\n"; out += "\\begin{table}[!htp]\n" + "\\centering\n" + "\\begin{tabular}{|c|c|}\\hline\n" + "Algorithm&Ranking\\\\\\hline\n"; for (i = 0; i < algorithmName.length; i++) { out += (String) algorithmName[i] + " & " + nf4.format(Rj[i]) + "\\\\\n"; } out += "\\hline\n\\end{tabular}\n\\caption{Average Rankings of the algorithms}\n\\end{table}"; /*Compute the Friedman statistic*/ termino1 = (12 * (double) nDatasets) / ((double) algorithmName.length * ((double) algorithmName.length + 1)); termino2 = (double) algorithmName.length * ((double) algorithmName.length + 1) * ((double) algorithmName.length + 1) / (4.0); for (i = 0; i < algorithmName.length; i++) { sumatoria += Rj[i] * Rj[i]; } friedman = (sumatoria - termino2) * termino1; out += "\n\nFriedman statistic considering reduction performance (distributed according to chi-square with " + (algorithmName.length - 1) + " degrees of freedom: " + nf6.format(friedman) + ".\n\n"; double pFriedman; pFriedman = ChiSq(friedman, (algorithmName.length - 1)); System.out.print("P-value computed by Friedman Test: " + pFriedman + ".\\newline\n\n"); /*Compute the Iman-Davenport statistic*/ if (Iman) { iman = ((nDatasets - 1) * friedman) / (nDatasets * (algorithmName.length - 1) - friedman); out += "Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with " + (algorithmName.length - 1) + " and " + (algorithmName.length - 1) * (nDatasets - 1) + " degrees of freedom: " + nf6.format(iman) + ".\n\n"; double pIman; pIman = FishF(iman, (algorithmName.length - 1), (algorithmName.length - 1) * (nDatasets - 1)); System.out.print("P-value computed by Iman and Daveport Test: " + pIman + ".\\newline\n\n"); } termino3 = Math.sqrt( (double) algorithmName.length * ((double) algorithmName.length + 1) / (6.0 * (double) nDatasets)); out += "\n\n\\pagebreak\n\n"; /** ********** NxN COMPARISON ************* */ out += "\\section{Post hoc comparisons}"; out += "\n\nResults achieved on post hoc comparisons for $\\alpha = 0.05$, $\\alpha = 0.10$ and adjusted p-values.\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.05*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; parejitas = new Relation[(int) combinatoria(2, algorithmName.length)]; T = new Vector<Integer>(); T = trueHShaffer(algorithmName.length); Tarray = new int[T.size()]; for (i = 0; i < T.size(); i++) { Tarray[i] = ((Integer) T.elementAt(i)).intValue(); } Arrays.sort(Tarray); SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; parejitas[k] = new Relation(i, j); } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.05 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.05 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } out += "\\subsection{P-values for $\\alpha=0.05$}\n\n"; int count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.05$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.05 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > (0.05 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size()))) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; out += "\\subsection{P-values for $\\alpha=0.10$}\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.10*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.1 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.1 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.10$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.10 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { indices.removeAllElements(); for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > 0.1 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size())) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; /** ********** ADJUSTED P-VALUES NxN COMPARISON ************* */ out += "\\subsection{Adjusted p-values}\n\n"; adjustedP = new double[Pi.length][4]; pos = 0; tmp = Tarray.length - 1; for (i = 0; i < adjustedP.length; i++) { adjustedP[i][0] = Pi[i] * (double) (adjustedP.length); adjustedP[i][1] = Pi[i] * (double) (adjustedP.length - i); adjustedP[i][2] = Pi[i] * ((double) adjustedP.length - (double) Math.max(pos, i)); if (i == pos) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } if (algorithmName.length <= MAX_ALGORITHMS) { maxAPi = Double.MIN_VALUE; minPi = Double.MAX_VALUE; for (j = 0; j < exhaustiveI.size(); j++) { if (exhaustiveI.elementAt(j).toString().contains(parejitas[order[i]].toString())) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .j]) / SE); for (k = 1; k < ((Vector<Relation>) exhaustiveI.elementAt(j)).size(); k++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } tmpAPi = minPi * (double) (((Vector<Relation>) exhaustiveI.elementAt(j)).size()); if (tmpAPi > maxAPi) { maxAPi = tmpAPi; } } } adjustedP[i][3] = maxAPi; } } for (i = 1; i < adjustedP.length; i++) { if (adjustedP[i][1] < adjustedP[i - 1][1]) adjustedP[i][1] = adjustedP[i - 1][1]; if (adjustedP[i][2] < adjustedP[i - 1][2]) adjustedP[i][2] = adjustedP[i - 1][2]; if (adjustedP[i][3] < adjustedP[i - 1][3]) adjustedP[i][3] = adjustedP[i - 1][3]; } count = 3; if (Nemenyi) { count++; } if (Holm) { count++; } if (Scha) { count++; } if (Berg) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "i&hypothesis&unadjusted $p$"; if (Nemenyi) { out += "&$p_{Neme}$"; } if (Holm) { out += "&$p_{Holm}$"; } if (Scha) { out += "&$p_{Shaf}$"; } if (Berg) { out += "&$p_{Berg}$"; } out += "\\\\\n\\hline"; for (i = 0; i < Pi.length; i++) { out += (i + 1) + "&" + algorithmName[parejitas[order[i]].i] + " vs ." + algorithmName[parejitas[order[i]].j] + "&" + nf6.format(Pi[i]); if (Nemenyi) { out += "&" + nf6.format(adjustedP[i][0]); } if (Holm) { out += "&" + nf6.format(adjustedP[i][1]); } if (Scha) { out += "&" + nf6.format(adjustedP[i][2]); } if (Berg) { out += "&" + nf6.format(adjustedP[i][3]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{Adjusted $p$-values}\n" + "\\end{table}\n\n"; out += "\\end{landscape}\n\\end{document}"; return out; } // end-method
/** It launches the algorithm */ public void execute() { int i, j, k, l; int t; int ele; double prob[]; double aux; double NUmax = 1.5; // used for lineal ranking double NUmin = 0.5; // used for lineal ranking double pos1, pos2; int sel1, sel2; int data[][]; int infoAttr[]; int classData[]; Vector<Rule> contenedor = new Vector<Rule>(); Vector<Rule> conjR = new Vector<Rule>(); Rule tmpRule; Condition tmpCondition[] = new Condition[1]; RuleSet population[]; RuleSet hijo1, hijo2; if (somethingWrong) { // We do not execute the program System.err.println("An error was found, the data-set has numerical values."); System.err.println("Aborting the program"); // We should not use the statement: System.exit(-1); } else { Randomize.setSeed(seed); nClasses = train.getnClasses(); /*Build the nominal data information*/ infoAttr = new int[train.getnInputs()]; for (i = 0; i < infoAttr.length; i++) { infoAttr[i] = train.numberValues(i); } data = new int[train.getnData()][train.getnInputs()]; for (i = 0; i < data.length; i++) { for (j = 0; j < data[i].length; j++) { if (train.isMissing(i, j)) data[i][j] = -1; else data[i][j] = train.valueExample(i, j); } } classData = new int[train.getnData()]; for (i = 0; i < classData.length; i++) { classData[i] = train.getOutputAsInteger(i); } /*Find first-order rules which result interesting*/ for (i = 0; i < nClasses; i++) { for (j = 0; j < infoAttr.length; j++) { for (k = 0; k < infoAttr[j]; k++) { tmpCondition[0] = new Condition(j, k); tmpRule = new Rule(tmpCondition); if (Math.abs(computeAdjustedResidual(data, classData, tmpRule, i)) > 1.96) { if (!contenedor.contains(tmpRule)) { contenedor.add(tmpRule); conjR.add(tmpRule); } } } } } // Construct the Baker selection roulette prob = new double[popSize]; for (j = 0; j < popSize; j++) { aux = (double) (NUmax - NUmin) * ((double) j / (popSize - 1)); prob[j] = (double) (1.0 / (popSize)) * (NUmax - aux); } for (j = 1; j < popSize; j++) prob[j] = prob[j] + prob[j - 1]; /*Steady-State Genetic Algorithm*/ ele = 2; population = new RuleSet[popSize]; while (conjR.size() >= 2) { t = 0; System.out.println("Producing rules of level " + ele); for (i = 0; i < population.length; i++) { population[i] = new RuleSet(conjR); population[i].computeFitness(data, classData, infoAttr, contenedor, nClasses); } Arrays.sort(population); while (t < numGenerations && !population[0].equals(population[popSize - 1])) { System.out.println("Generation " + t); t++; /*Baker's selection*/ pos1 = Randomize.Rand(); pos2 = Randomize.Rand(); for (l = 0; l < popSize && prob[l] < pos1; l++) ; sel1 = l; for (l = 0; l < popSize && prob[l] < pos2; l++) ; sel2 = l; hijo1 = new RuleSet(population[sel1]); hijo2 = new RuleSet(population[sel2]); if (Randomize.Rand() < pCross) { RuleSet.crossover1(hijo1, hijo2); } else { RuleSet.crossover2(hijo1, hijo2); } RuleSet.mutation(hijo1, conjR, pMut, data, classData, infoAttr, contenedor, nClasses); RuleSet.mutation(hijo2, conjR, pMut, data, classData, infoAttr, contenedor, nClasses); hijo1.computeFitness(data, classData, infoAttr, contenedor, nClasses); hijo2.computeFitness(data, classData, infoAttr, contenedor, nClasses); population[popSize - 2] = new RuleSet(hijo1); population[popSize - 1] = new RuleSet(hijo2); Arrays.sort(population); } /*Decode function*/ ele++; conjR.removeAllElements(); System.out.println( "Fitness of the best chromosome in rule level " + ele + ": " + population[0].fitness); for (i = 0; i < population[0].getRuleSet().length; i++) { if (Math.abs(computeAdjustedResidual(data, classData, population[0].getRule(i), i)) > 1.96) { if (validarRegla(population[0].getRule(i)) && !contenedor.contains(population[0].getRule(i))) { contenedor.add(population[0].getRule(i)); conjR.add(population[0].getRule(i)); } } } } // Finally we should fill the training and test output files doOutput(this.val, this.outputTr, data, classData, infoAttr, contenedor, nClasses); doOutput(this.test, this.outputTst, data, classData, infoAttr, contenedor, nClasses); /*Print the rule obtained*/ for (i = contenedor.size() - 1; i >= 0; i--) { if (reglaPositiva( this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i))) { Fichero.AnadirtoFichero(outputRule, contenedor.elementAt(i).toString(train)); Fichero.AnadirtoFichero( outputRule, " -> " + consecuente( this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i)) + "\n"); } } System.out.println("Algorithm Finished"); } }