Ejemplo n.º 1
0
  /** Creates the total selector's set for get all the possible rules */
  private Complejo hazSelectores(Dataset train) {

    Complejo almacenSelectores;
    int nClases = train.getnclases();
    almacenSelectores =
        new Complejo(nClases); // Aqui voy a almacenar los selectores (numVariable,operador,valor)
    Attribute[] atributos = null;
    int num_atributos, type;
    Vector nominalValues;
    atributos = Attributes.getAttributes();
    num_atributos = Attributes.getNumAttributes();
    Selector s;

    for (int i = 0; i < train.getnentradas(); i++) {
      type = atributos[i].getType();
      switch (type) {
        case 0: // NOMINAL
          nominalValues = atributos[i].getNominalValuesList();
          // System.out.print("{");
          for (int j = 0; j < nominalValues.size(); j++) {
            // System.out.print ((String)nominalValues.elementAt(j)+"  ");
            s = new Selector(i, 0, (String) nominalValues.elementAt(j), true); // [atr,op,valor]
            // incluimos tb los valores en double para facilitar algunas funciones
            s.setValor((double) j);
            almacenSelectores.addSelector(s);
            // s.print();
          }
          // System.out.println("}");
          break;
      }
      // System.out.println(num_atributos);
    }
    return almacenSelectores;
  }
Ejemplo n.º 2
0
  /**
   * Checks if a node is legitimate. A node is illegitimate if its hamming distance to a pruned node
   * is 1 (this is, the node is a child of a previously pruned node).
   *
   * @param f node to check its legitimacy
   * @return true if the node is legitimate, false otherwise.
   */
  private boolean legitimate(boolean f[]) {
    boolean feas = true;
    for (int i = 0; i < pruned.size() && feas; i++) {
      if (hamming(pruned.elementAt(i), f) == 1) feas = false;
    }

    return feas;
  }
Ejemplo n.º 3
0
  /**
   * Joins two vectors
   *
   * @param a First vector
   * @param b Second vector
   * @return The joint of both vectors
   */
  public static Vector<Integer> unionVectores(Vector<Integer> a, Vector<Integer> b) {

    int i;

    for (i = 0; i < b.size(); i++) {
      if (a.contains(new Integer((Integer) (b.elementAt(i)))) == false) {
        a.addElement(b.elementAt(i));
      }
    }

    return a;
  } // end-method
Ejemplo n.º 4
0
  private String classificationOutput(
      myDataset dataset,
      int ex,
      int data[][],
      int classData[],
      int infoAttr[],
      Vector<Rule> contenedor,
      int nClases) {

    int j, k, l;
    boolean match;
    double tmp1, tmp2;
    int pos = 0, classPredicted;
    double Waip;
    int ejemplo[] = new int[data[0].length];

    for (j = 0; j < ejemplo.length; j++) {
      if (dataset.isMissing(ex, j)) ejemplo[j] = -1;
      else ejemplo[j] = dataset.valueExample(ex, j);
    }

    classPredicted = -1;
    Waip = 0;

    /*Search a match of the example (following by the container)*/
    for (j = contenedor.size() - 1; j >= 0; j--) {
      match = true;
      for (k = 0; k < contenedor.elementAt(j).getRule().length && match; k++) {
        if (ejemplo[contenedor.elementAt(j).getiCondition(k).getAttribute()]
            != contenedor.elementAt(j).getiCondition(k).getValue()) {
          match = false;
        }
      }
      if (match) {
        tmp1 = Double.NEGATIVE_INFINITY;
        for (l = 0; l < nClases; l++) {
          tmp2 = 0;
          for (k = 0; k < contenedor.elementAt(j).getRule().length; k++) {
            tmp2 +=
                RuleSet.computeWeightEvidence(
                    data, classData, contenedor.elementAt(j).getiCondition(k), l, infoAttr);
          }
          if (tmp2 > tmp1) {
            tmp1 = tmp2;
            pos = l;
          }
        }
        if (tmp1 > Waip) {
          classPredicted = pos;
          Waip = tmp1;
        }
      }
    }
    if (classPredicted == -1) return "Unclassified";

    return dataset.getOutputValue(classPredicted);
  }
Ejemplo n.º 5
0
  /** Recursive method for ABB */
  private void abb(boolean feat[]) {
    boolean[] child;
    double measure;

    threshold = data.measureIEP(feat);

    for (int i = 0; i < cardinalidadCto(feat); i++) {
      child = removeOne(feat, i);
      measure = data.measureIEP(child);

      if (legitimate(child) && measure < threshold) {
        if (measure < data.measureIEP(features)) {
          // we keep the best found in 'features'
          System.arraycopy(child, 0, features, 0, child.length);
        }
        abb(child);
      } else { // we prune this node
        pruned.add(child);
      }
    }
  }
Ejemplo n.º 6
0
  /**
   * Computes the trueHShaffer distribution from a given parameter.
   *
   * @param k K parameter
   * @param n M value
   * @return The trueHShaffer distribution
   */
  public static Vector<Integer> trueHShaffer(int k) {

    Vector<Integer> number;
    int j;
    Vector<Integer> tmp, tmp2;
    int p;

    number = new Vector<Integer>();
    tmp = new Vector<Integer>();
    if (k <= 1) {
      number.addElement(new Integer(0));
    } else {
      for (j = 1; j <= k; j++) {
        tmp = trueHShaffer(k - j);
        tmp2 = new Vector<Integer>();
        for (p = 0; p < tmp.size(); p++) {
          tmp2.addElement(((Integer) (tmp.elementAt(p))).intValue() + (int) combinatoria(2, j));
        }
        number = unionVectores(number, tmp2);
      }
    }

    return number;
  } // end-method
Ejemplo n.º 7
0
  /**
   * Obtain all exhaustive comparisons possible from an array of indexes
   *
   * @param indices A verctos of indexes.
   * @return A vector with vectors containing all the possible relations between the indexes
   */
  @SuppressWarnings("unchecked")
  public static Vector<Vector<Relation>> obtainExhaustive(Vector<Integer> indices) {

    Vector<Vector<Relation>> result = new Vector<Vector<Relation>>();
    int i, j, k;
    String binario;
    boolean[] number = new boolean[indices.size()];
    Vector<Integer> ind1, ind2;
    Vector<Relation> set = new Vector<Relation>();
    Vector<Vector<Relation>> res1, res2;
    Vector<Relation> temp;
    Vector<Relation> temp2;
    Vector<Relation> temp3;

    ind1 = new Vector<Integer>();
    ind2 = new Vector<Integer>();
    temp = new Vector<Relation>();
    temp2 = new Vector<Relation>();
    temp3 = new Vector<Relation>();

    for (i = 0; i < indices.size(); i++) {
      for (j = i + 1; j < indices.size(); j++) {
        set.addElement(
            new Relation(
                ((Integer) indices.elementAt(i)).intValue(),
                ((Integer) indices.elementAt(j)).intValue()));
      }
    }
    if (set.size() > 0) result.addElement(set);

    for (i = 1; i < (int) (Math.pow(2, indices.size() - 1)); i++) {
      Arrays.fill(number, false);
      ind1.removeAllElements();
      ind2.removeAllElements();
      temp.removeAllElements();
      temp2.removeAllElements();
      temp3.removeAllElements();
      binario = Integer.toString(i, 2);
      for (k = 0; k < number.length - binario.length(); k++) {
        number[k] = false;
      }
      for (j = 0; j < binario.length(); j++, k++) {
        if (binario.charAt(j) == '1') number[k] = true;
      }
      for (j = 0; j < number.length; j++) {
        if (number[j] == true) {
          ind1.addElement(new Integer(((Integer) indices.elementAt(j)).intValue()));
        } else {
          ind2.addElement(new Integer(((Integer) indices.elementAt(j)).intValue()));
        }
      }
      res1 = obtainExhaustive(ind1);
      res2 = obtainExhaustive(ind2);
      for (j = 0; j < res1.size(); j++) {
        result.addElement(new Vector<Relation>((Vector<Relation>) res1.elementAt(j)));
      }
      for (j = 0; j < res2.size(); j++) {
        result.addElement(new Vector<Relation>((Vector<Relation>) res2.elementAt(j)));
      }
      for (j = 0; j < res1.size(); j++) {
        temp = (Vector<Relation>) ((Vector<Relation>) res1.elementAt(j)).clone();
        for (k = 0; k < res2.size(); k++) {
          temp2 = (Vector<Relation>) temp.clone();
          temp3 = (Vector<Relation>) ((Vector<Relation>) res2.elementAt(k)).clone();
          if (((Relation) temp2.elementAt(0)).i < ((Relation) temp3.elementAt(0)).i) {
            temp2.addAll((Vector<Relation>) temp3);
            result.addElement(new Vector<Relation>(temp2));
          } else {
            temp3.addAll((Vector<Relation>) temp2);
            result.addElement(new Vector<Relation>(temp3));
          }
        }
      }
    }
    for (i = 0; i < result.size(); i++) {
      if (((Vector<Relation>) result.elementAt(i)).toString().equalsIgnoreCase("[]")) {
        result.removeElementAt(i);
        i--;
      }
    }
    for (i = 0; i < result.size(); i++) {
      for (j = i + 1; j < result.size(); j++) {
        if (((Vector<Relation>) result.elementAt(i))
            .toString()
            .equalsIgnoreCase(((Vector<Relation>) result.elementAt(j)).toString())) {
          result.removeElementAt(j);
          j--;
        }
      }
    }
    return result;
  } // end-method
Ejemplo n.º 8
0
  /**
   * This method runs the multiple comparison tests
   *
   * @param code A value to codify which post-hoc methods apply
   * @param results Array with the results of the methods
   * @param algorithmName Array with the name of the methods employed
   * @return A string with the contents of the test in LaTeX format
   */
  private static String runMultiple(double[][] results, String algorithmName[]) {

    int i, j, k;
    int posicion;
    double mean[][];
    MultiplePair orden[][];
    MultiplePair rank[][];
    boolean encontrado;
    int ig;
    double sum;
    boolean visto[];
    Vector<Integer> porVisitar;
    double Rj[];
    double friedman;
    double sumatoria = 0;
    double termino1, termino2, termino3;
    double iman;
    boolean vistos[];
    int pos, tmp, counter;
    String cad;
    double maxVal;
    double Pi[];
    double ALPHAiHolm[];
    double ALPHAiShaffer[];
    String ordenAlgoritmos[];
    double ordenRankings[];
    int order[];
    double adjustedP[][];
    double SE;
    boolean parar;
    Vector<Integer> indices = new Vector<Integer>();
    Vector<Vector<Relation>> exhaustiveI = new Vector<Vector<Relation>>();
    boolean[][] cuadro;
    double minPi, tmpPi, maxAPi, tmpAPi;
    Relation[] parejitas;
    Vector<Integer> T;
    int Tarray[];

    DecimalFormat nf4 = (DecimalFormat) DecimalFormat.getInstance();
    nf4.setMaximumFractionDigits(4);
    nf4.setMinimumFractionDigits(0);

    DecimalFormatSymbols dfs = nf4.getDecimalFormatSymbols();
    dfs.setDecimalSeparator('.');
    nf4.setDecimalFormatSymbols(dfs);

    DecimalFormat nf6 = (DecimalFormat) DecimalFormat.getInstance();
    nf6.setMaximumFractionDigits(6);
    nf6.setMinimumFractionDigits(0);

    nf6.setDecimalFormatSymbols(dfs);

    String out = "";

    int nDatasets = Configuration.getNDatasets();

    Iman = Configuration.isIman();
    Nemenyi = Configuration.isNemenyi();
    Bonferroni = Configuration.isBonferroni();
    Holm = Configuration.isHolm();
    Hoch = Configuration.isHochberg();
    Hommel = Configuration.isHommel();
    Scha = Configuration.isShaffer();
    Berg = Configuration.isBergman();

    mean = new double[nDatasets][algorithmName.length];

    // Maximize performance
    if (Configuration.getObjective() == 1) {

      /*Compute the average performance per algorithm for each data set*/
      for (i = 0; i < nDatasets; i++) {
        for (j = 0; j < algorithmName.length; j++) {
          mean[i][j] = results[j][i];
        }
      }

    }
    // Minimize performance
    else {

      double maxValue = Double.MIN_VALUE;

      /*Compute the average performance per algorithm for each data set*/
      for (i = 0; i < nDatasets; i++) {
        for (j = 0; j < algorithmName.length; j++) {

          if (results[j][i] > maxValue) {
            maxValue = results[j][i];
          }

          mean[i][j] = (-1.0 * results[j][i]);
        }
      }

      for (i = 0; i < nDatasets; i++) {
        for (j = 0; j < algorithmName.length; j++) {
          mean[i][j] += maxValue;
        }
      }
    }

    /*We use the pareja structure to compute and order rankings*/
    orden = new MultiplePair[nDatasets][algorithmName.length];
    for (i = 0; i < nDatasets; i++) {
      for (j = 0; j < algorithmName.length; j++) {
        orden[i][j] = new MultiplePair(j, mean[i][j]);
      }
      Arrays.sort(orden[i]);
    }

    /*building of the rankings table per algorithms and data sets*/
    rank = new MultiplePair[nDatasets][algorithmName.length];
    posicion = 0;
    for (i = 0; i < nDatasets; i++) {
      for (j = 0; j < algorithmName.length; j++) {
        encontrado = false;
        for (k = 0; k < algorithmName.length && !encontrado; k++) {
          if (orden[i][k].indice == j) {
            encontrado = true;
            posicion = k + 1;
          }
        }
        rank[i][j] = new MultiplePair(posicion, orden[i][posicion - 1].valor);
      }
    }

    /*In the case of having the same performance, the rankings are equal*/
    for (i = 0; i < nDatasets; i++) {
      visto = new boolean[algorithmName.length];
      porVisitar = new Vector<Integer>();

      Arrays.fill(visto, false);
      for (j = 0; j < algorithmName.length; j++) {
        porVisitar.removeAllElements();
        sum = rank[i][j].indice;
        visto[j] = true;
        ig = 1;
        for (k = j + 1; k < algorithmName.length; k++) {
          if (rank[i][j].valor == rank[i][k].valor && !visto[k]) {
            sum += rank[i][k].indice;
            ig++;
            porVisitar.add(new Integer(k));
            visto[k] = true;
          }
        }
        sum /= (double) ig;
        rank[i][j].indice = sum;
        for (k = 0; k < porVisitar.size(); k++) {
          rank[i][((Integer) porVisitar.elementAt(k)).intValue()].indice = sum;
        }
      }
    }

    /*compute the average ranking for each algorithm*/
    Rj = new double[algorithmName.length];
    for (i = 0; i < algorithmName.length; i++) {
      Rj[i] = 0;
      for (j = 0; j < nDatasets; j++) {
        Rj[i] += rank[j][i].indice / ((double) nDatasets);
      }
    }

    /*Print the average ranking per algorithm*/
    out += "\n\nAverage ranks obtained by applying the Friedman procedure\n\n";

    out +=
        "\\begin{table}[!htp]\n"
            + "\\centering\n"
            + "\\begin{tabular}{|c|c|}\\hline\n"
            + "Algorithm&Ranking\\\\\\hline\n";
    for (i = 0; i < algorithmName.length; i++) {
      out += (String) algorithmName[i] + " & " + nf4.format(Rj[i]) + "\\\\\n";
    }
    out += "\\hline\n\\end{tabular}\n\\caption{Average Rankings of the algorithms}\n\\end{table}";

    /*Compute the Friedman statistic*/
    termino1 =
        (12 * (double) nDatasets)
            / ((double) algorithmName.length * ((double) algorithmName.length + 1));
    termino2 =
        (double) algorithmName.length
            * ((double) algorithmName.length + 1)
            * ((double) algorithmName.length + 1)
            / (4.0);
    for (i = 0; i < algorithmName.length; i++) {
      sumatoria += Rj[i] * Rj[i];
    }
    friedman = (sumatoria - termino2) * termino1;
    out +=
        "\n\nFriedman statistic considering reduction performance (distributed according to chi-square with "
            + (algorithmName.length - 1)
            + " degrees of freedom: "
            + nf6.format(friedman)
            + ".\n\n";

    double pFriedman;
    pFriedman = ChiSq(friedman, (algorithmName.length - 1));

    System.out.print("P-value computed by Friedman Test: " + pFriedman + ".\\newline\n\n");

    /*Compute the Iman-Davenport statistic*/
    if (Iman) {
      iman = ((nDatasets - 1) * friedman) / (nDatasets * (algorithmName.length - 1) - friedman);
      out +=
          "Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with "
              + (algorithmName.length - 1)
              + " and "
              + (algorithmName.length - 1) * (nDatasets - 1)
              + " degrees of freedom: "
              + nf6.format(iman)
              + ".\n\n";

      double pIman;

      pIman = FishF(iman, (algorithmName.length - 1), (algorithmName.length - 1) * (nDatasets - 1));
      System.out.print("P-value computed by Iman and Daveport Test: " + pIman + ".\\newline\n\n");
    }

    termino3 =
        Math.sqrt(
            (double) algorithmName.length
                * ((double) algorithmName.length + 1)
                / (6.0 * (double) nDatasets));

    out += "\n\n\\pagebreak\n\n";

    /** ********** NxN COMPARISON ************* */
    out += "\\section{Post hoc comparisons}";
    out +=
        "\n\nResults achieved on post hoc comparisons for $\\alpha = 0.05$, $\\alpha = 0.10$ and adjusted p-values.\n\n";
    /*Compute the unadjusted p_i value for each comparison alpha=0.05*/
    Pi = new double[(int) combinatoria(2, algorithmName.length)];
    ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)];
    ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)];
    ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)];
    ordenRankings = new double[(int) combinatoria(2, algorithmName.length)];
    order = new int[(int) combinatoria(2, algorithmName.length)];
    parejitas = new Relation[(int) combinatoria(2, algorithmName.length)];
    T = new Vector<Integer>();
    T = trueHShaffer(algorithmName.length);
    Tarray = new int[T.size()];
    for (i = 0; i < T.size(); i++) {
      Tarray[i] = ((Integer) T.elementAt(i)).intValue();
    }
    Arrays.sort(Tarray);

    SE = termino3;
    vistos = new boolean[(int) combinatoria(2, algorithmName.length)];
    for (i = 0, k = 0; i < algorithmName.length; i++) {
      for (j = i + 1; j < algorithmName.length; j++, k++) {
        ordenRankings[k] = Math.abs(Rj[i] - Rj[j]);
        ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j];
        parejitas[k] = new Relation(i, j);
      }
    }

    Arrays.fill(vistos, false);
    for (i = 0; i < ordenRankings.length; i++) {
      for (j = 0; vistos[j] == true; j++) ;
      pos = j;
      maxVal = ordenRankings[j];
      for (j = j + 1; j < ordenRankings.length; j++) {
        if (vistos[j] == false && ordenRankings[j] > maxVal) {
          pos = j;
          maxVal = ordenRankings[j];
        }
      }
      vistos[pos] = true;
      order[i] = pos;
    }

    /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/

    pos = 0;
    tmp = Tarray.length - 1;
    for (i = 0; i < order.length; i++) {
      Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE));
      ALPHAiHolm[i] = 0.05 / ((double) order.length - (double) i);
      ALPHAiShaffer[i] = 0.05 / ((double) order.length - (double) Math.max(pos, i));
      if (i == pos && Pi[i] <= ALPHAiShaffer[i]) {
        tmp--;
        pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp];
      }
    }

    out += "\\subsection{P-values for $\\alpha=0.05$}\n\n";

    int count = 4;

    if (Holm) {
      count++;
    }
    if (Scha) {
      count++;
    }
    out +=
        "\\begin{table}[!htp]\n\\centering\\scriptsize\n"
            + "\\begin{tabular}{"
            + printC(count)
            + "}\n"
            + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$";
    if (Holm) {
      out += "&Holm";
    }
    if (Scha) {
      out += "&Shaffer";
    }

    out += "\\\\\n\\hline";

    for (i = 0; i < order.length; i++) {
      out +=
          (order.length - i)
              + "&"
              + ordenAlgoritmos[order[i]]
              + "&"
              + nf6.format(Math.abs((ordenRankings[order[i]]) / SE))
              + "&"
              + nf6.format(Pi[i]);
      if (Holm) {
        out += "&" + nf6.format(ALPHAiHolm[i]);
      }
      if (Scha) {
        out += "&" + nf6.format(ALPHAiShaffer[i]);
      }
      out += "\\\\\n";
    }

    out +=
        "\\hline\n"
            + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.05$}\n"
            + "\\end{table}";

    /*Compute the rejected hipotheses for each test*/

    if (Nemenyi) {
      out +=
          "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le"
              + nf6.format(0.05 / (double) (order.length))
              + "$.\n\n";
    }

    if (Holm) {
      parar = false;
      for (i = 0; i < order.length && !parar; i++) {
        if (Pi[i] > ALPHAiHolm[i]) {
          out +=
              "Holm's procedure rejects those hypotheses that have a p-value $\\le"
                  + nf6.format(ALPHAiHolm[i])
                  + "$.\n\n";
          parar = true;
        }
      }
    }

    if (Scha) {
      parar = false;
      for (i = 0; i < order.length && !parar; i++) {
        if (Pi[i] <= ALPHAiShaffer[i]) {
          out +=
              "Shaffer's procedure rejects those hypotheses that have a p-value $\\le"
                  + nf6.format(ALPHAiShaffer[i])
                  + "$.\n\n";
          parar = true;
        }
      }
    }

    /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/
    if (algorithmName.length <= MAX_ALGORITHMS) {
      for (i = 0; i < algorithmName.length; i++) {
        indices.add(new Integer(i));
      }
      exhaustiveI = obtainExhaustive(indices);
      cuadro = new boolean[algorithmName.length][algorithmName.length];
      for (i = 0; i < algorithmName.length; i++) {
        Arrays.fill(cuadro[i], false);
      }

      for (i = 0; i < exhaustiveI.size(); i++) {
        minPi =
            2
                * CDF_Normal.normp(
                    (-1)
                        * Math.abs(
                            Rj[
                                    ((Relation)
                                            ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                .elementAt(0))
                                        .i]
                                - Rj[
                                    ((Relation)
                                            ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                .elementAt(0))
                                        .j])
                        / SE);

        for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) {
          tmpPi =
              2
                  * CDF_Normal.normp(
                      (-1)
                          * Math.abs(
                              Rj[
                                      ((Relation)
                                              ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                  .elementAt(j))
                                          .i]
                                  - Rj[
                                      ((Relation)
                                              ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                  .elementAt(j))
                                          .j])
                          / SE);
          if (tmpPi < minPi) {
            minPi = tmpPi;
          }
        }
        if (minPi > (0.05 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size()))) {
          for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) {
            cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][
                    ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] =
                true;
          }
        }
      }

      if (Berg) {
        cad = "";
        cad += "Bergmann's procedure rejects these hypotheses:\n\n";
        cad += "\\begin{itemize}\n\n";

        counter = 0;
        for (i = 0; i < cuadro.length; i++) {
          for (j = i + 1; j < cuadro.length; j++) {
            if (cuadro[i][j] == false) {
              cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n";
              counter++;
            }
          }
        }
        cad += "\\end{itemize}\n\n";

        if (counter > 0) {
          out += cad;
        } else {
          out += "Bergmann's procedure does not reject any hypotheses.\n\n";
        }
      }
    }

    out += "\\pagebreak\n\n";
    out += "\\subsection{P-values for $\\alpha=0.10$}\n\n";

    /*Compute the unadjusted p_i value for each comparison alpha=0.10*/
    Pi = new double[(int) combinatoria(2, algorithmName.length)];
    ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)];
    ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)];
    ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)];
    ordenRankings = new double[(int) combinatoria(2, algorithmName.length)];
    order = new int[(int) combinatoria(2, algorithmName.length)];

    SE = termino3;
    vistos = new boolean[(int) combinatoria(2, algorithmName.length)];
    for (i = 0, k = 0; i < algorithmName.length; i++) {
      for (j = i + 1; j < algorithmName.length; j++, k++) {
        ordenRankings[k] = Math.abs(Rj[i] - Rj[j]);
        ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j];
      }
    }

    Arrays.fill(vistos, false);
    for (i = 0; i < ordenRankings.length; i++) {
      for (j = 0; vistos[j] == true; j++) ;
      pos = j;
      maxVal = ordenRankings[j];

      for (j = j + 1; j < ordenRankings.length; j++) {
        if (vistos[j] == false && ordenRankings[j] > maxVal) {
          pos = j;
          maxVal = ordenRankings[j];
        }
      }
      vistos[pos] = true;
      order[i] = pos;
    }

    /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/
    pos = 0;
    tmp = Tarray.length - 1;
    for (i = 0; i < order.length; i++) {
      Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE));
      ALPHAiHolm[i] = 0.1 / ((double) order.length - (double) i);
      ALPHAiShaffer[i] = 0.1 / ((double) order.length - (double) Math.max(pos, i));
      if (i == pos && Pi[i] <= ALPHAiShaffer[i]) {
        tmp--;
        pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp];
      }
    }

    count = 4;

    if (Holm) {
      count++;
    }
    if (Scha) {
      count++;
    }
    out +=
        "\\begin{table}[!htp]\n\\centering\\scriptsize\n"
            + "\\begin{tabular}{"
            + printC(count)
            + "}\n"
            + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$";
    if (Holm) {
      out += "&Holm";
    }
    if (Scha) {
      out += "&Shaffer";
    }
    out += "\\\\\n\\hline";

    for (i = 0; i < order.length; i++) {
      out +=
          (order.length - i)
              + "&"
              + ordenAlgoritmos[order[i]]
              + "&"
              + nf6.format(Math.abs((ordenRankings[order[i]]) / SE))
              + "&"
              + nf6.format(Pi[i]);
      if (Holm) {
        out += "&" + nf6.format(ALPHAiHolm[i]);
      }
      if (Scha) {
        out += "&" + nf6.format(ALPHAiShaffer[i]);
      }
      out += "\\\\\n";
    }

    out +=
        "\\hline\n"
            + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.10$}\n"
            + "\\end{table}";

    /*Compute the rejected hipotheses for each test*/

    if (Nemenyi) {
      out +=
          "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le"
              + nf6.format(0.10 / (double) (order.length))
              + "$.\n\n";
    }

    if (Holm) {
      parar = false;

      for (i = 0; i < order.length && !parar; i++) {
        if (Pi[i] > ALPHAiHolm[i]) {
          out +=
              "Holm's procedure rejects those hypotheses that have a p-value $\\le"
                  + nf6.format(ALPHAiHolm[i])
                  + "$.\n\n";
          parar = true;
        }
      }
    }

    if (Scha) {
      parar = false;
      for (i = 0; i < order.length && !parar; i++) {
        if (Pi[i] <= ALPHAiShaffer[i]) {
          out +=
              "Shaffer's procedure rejects those hypotheses that have a p-value $\\le"
                  + nf6.format(ALPHAiShaffer[i])
                  + "$.\n\n";
          parar = true;
        }
      }
    }

    /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/
    if (algorithmName.length <= MAX_ALGORITHMS) {

      indices.removeAllElements();
      for (i = 0; i < algorithmName.length; i++) {
        indices.add(new Integer(i));
      }

      exhaustiveI = obtainExhaustive(indices);
      cuadro = new boolean[algorithmName.length][algorithmName.length];

      for (i = 0; i < algorithmName.length; i++) {
        Arrays.fill(cuadro[i], false);
      }

      for (i = 0; i < exhaustiveI.size(); i++) {
        minPi =
            2
                * CDF_Normal.normp(
                    (-1)
                        * Math.abs(
                            Rj[
                                    ((Relation)
                                            ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                .elementAt(0))
                                        .i]
                                - Rj[
                                    ((Relation)
                                            ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                .elementAt(0))
                                        .j])
                        / SE);
        for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) {
          tmpPi =
              2
                  * CDF_Normal.normp(
                      (-1)
                          * Math.abs(
                              Rj[
                                      ((Relation)
                                              ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                  .elementAt(j))
                                          .i]
                                  - Rj[
                                      ((Relation)
                                              ((Vector<Relation>) exhaustiveI.elementAt(i))
                                                  .elementAt(j))
                                          .j])
                          / SE);
          if (tmpPi < minPi) {
            minPi = tmpPi;
          }
        }

        if (minPi > 0.1 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size())) {
          for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) {
            cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][
                    ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] =
                true;
          }
        }
      }

      if (Berg) {

        cad = "";
        cad += "Bergmann's procedure rejects these hypotheses:\n\n";
        cad += "\\begin{itemize}\n\n";

        counter = 0;
        for (i = 0; i < cuadro.length; i++) {
          for (j = i + 1; j < cuadro.length; j++) {
            if (cuadro[i][j] == false) {
              cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n";
              counter++;
            }
          }
        }
        cad += "\\end{itemize}\n\n";

        if (counter > 0) {
          out += cad;
        } else {
          out += "Bergmann's procedure does not reject any hypotheses.\n\n";
        }
      }
    }

    out += "\\pagebreak\n\n";

    /** ********** ADJUSTED P-VALUES NxN COMPARISON ************* */
    out += "\\subsection{Adjusted p-values}\n\n";

    adjustedP = new double[Pi.length][4];
    pos = 0;
    tmp = Tarray.length - 1;

    for (i = 0; i < adjustedP.length; i++) {
      adjustedP[i][0] = Pi[i] * (double) (adjustedP.length);
      adjustedP[i][1] = Pi[i] * (double) (adjustedP.length - i);
      adjustedP[i][2] = Pi[i] * ((double) adjustedP.length - (double) Math.max(pos, i));

      if (i == pos) {
        tmp--;
        pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp];
      }

      if (algorithmName.length <= MAX_ALGORITHMS) {
        maxAPi = Double.MIN_VALUE;
        minPi = Double.MAX_VALUE;
        for (j = 0; j < exhaustiveI.size(); j++) {
          if (exhaustiveI.elementAt(j).toString().contains(parejitas[order[i]].toString())) {
            minPi =
                2
                    * CDF_Normal.normp(
                        (-1)
                            * Math.abs(
                                Rj[
                                        ((Relation)
                                                ((Vector<Relation>) exhaustiveI.elementAt(j))
                                                    .elementAt(0))
                                            .i]
                                    - Rj[
                                        ((Relation)
                                                ((Vector<Relation>) exhaustiveI.elementAt(j))
                                                    .elementAt(0))
                                            .j])
                            / SE);
            for (k = 1; k < ((Vector<Relation>) exhaustiveI.elementAt(j)).size(); k++) {
              tmpPi =
                  2
                      * CDF_Normal.normp(
                          (-1)
                              * Math.abs(
                                  Rj[
                                          ((Relation)
                                                  ((Vector<Relation>) exhaustiveI.elementAt(j))
                                                      .elementAt(k))
                                              .i]
                                      - Rj[
                                          ((Relation)
                                                  ((Vector<Relation>) exhaustiveI.elementAt(j))
                                                      .elementAt(k))
                                              .j])
                              / SE);
              if (tmpPi < minPi) {
                minPi = tmpPi;
              }
            }
            tmpAPi = minPi * (double) (((Vector<Relation>) exhaustiveI.elementAt(j)).size());
            if (tmpAPi > maxAPi) {
              maxAPi = tmpAPi;
            }
          }
        }

        adjustedP[i][3] = maxAPi;
      }
    }

    for (i = 1; i < adjustedP.length; i++) {
      if (adjustedP[i][1] < adjustedP[i - 1][1]) adjustedP[i][1] = adjustedP[i - 1][1];
      if (adjustedP[i][2] < adjustedP[i - 1][2]) adjustedP[i][2] = adjustedP[i - 1][2];
      if (adjustedP[i][3] < adjustedP[i - 1][3]) adjustedP[i][3] = adjustedP[i - 1][3];
    }

    count = 3;

    if (Nemenyi) {
      count++;
    }
    if (Holm) {
      count++;
    }
    if (Scha) {
      count++;
    }
    if (Berg) {
      count++;
    }

    out +=
        "\\begin{table}[!htp]\n\\centering\\scriptsize\n"
            + "\\begin{tabular}{"
            + printC(count)
            + "}\n"
            + "i&hypothesis&unadjusted $p$";

    if (Nemenyi) {
      out += "&$p_{Neme}$";
    }
    if (Holm) {
      out += "&$p_{Holm}$";
    }
    if (Scha) {
      out += "&$p_{Shaf}$";
    }
    if (Berg) {
      out += "&$p_{Berg}$";
    }

    out += "\\\\\n\\hline";

    for (i = 0; i < Pi.length; i++) {
      out +=
          (i + 1)
              + "&"
              + algorithmName[parejitas[order[i]].i]
              + " vs ."
              + algorithmName[parejitas[order[i]].j]
              + "&"
              + nf6.format(Pi[i]);
      if (Nemenyi) {
        out += "&" + nf6.format(adjustedP[i][0]);
      }
      if (Holm) {
        out += "&" + nf6.format(adjustedP[i][1]);
      }
      if (Scha) {
        out += "&" + nf6.format(adjustedP[i][2]);
      }
      if (Berg) {
        out += "&" + nf6.format(adjustedP[i][3]);
      }

      out += "\\\\\n";
    }

    out += "\\hline\n" + "\\end{tabular}\n\\caption{Adjusted $p$-values}\n" + "\\end{table}\n\n";
    out += "\\end{landscape}\n\\end{document}";

    return out;
  } // end-method
Ejemplo n.º 9
0
  /** It launches the algorithm */
  public void execute() {

    int i, j, k, l;
    int t;
    int ele;
    double prob[];
    double aux;
    double NUmax = 1.5; // used for lineal ranking
    double NUmin = 0.5; // used for lineal ranking
    double pos1, pos2;
    int sel1, sel2;
    int data[][];
    int infoAttr[];
    int classData[];
    Vector<Rule> contenedor = new Vector<Rule>();
    Vector<Rule> conjR = new Vector<Rule>();
    Rule tmpRule;
    Condition tmpCondition[] = new Condition[1];
    RuleSet population[];
    RuleSet hijo1, hijo2;

    if (somethingWrong) { // We do not execute the program
      System.err.println("An error was found, the data-set has numerical values.");
      System.err.println("Aborting the program");
      // We should not use the statement: System.exit(-1);
    } else {
      Randomize.setSeed(seed);

      nClasses = train.getnClasses();

      /*Build the nominal data information*/
      infoAttr = new int[train.getnInputs()];
      for (i = 0; i < infoAttr.length; i++) {
        infoAttr[i] = train.numberValues(i);
      }

      data = new int[train.getnData()][train.getnInputs()];
      for (i = 0; i < data.length; i++) {
        for (j = 0; j < data[i].length; j++) {
          if (train.isMissing(i, j)) data[i][j] = -1;
          else data[i][j] = train.valueExample(i, j);
        }
      }

      classData = new int[train.getnData()];
      for (i = 0; i < classData.length; i++) {
        classData[i] = train.getOutputAsInteger(i);
      }

      /*Find first-order rules which result interesting*/

      for (i = 0; i < nClasses; i++) {
        for (j = 0; j < infoAttr.length; j++) {
          for (k = 0; k < infoAttr[j]; k++) {
            tmpCondition[0] = new Condition(j, k);
            tmpRule = new Rule(tmpCondition);
            if (Math.abs(computeAdjustedResidual(data, classData, tmpRule, i)) > 1.96) {
              if (!contenedor.contains(tmpRule)) {
                contenedor.add(tmpRule);
                conjR.add(tmpRule);
              }
            }
          }
        }
      }

      // Construct the Baker selection roulette
      prob = new double[popSize];
      for (j = 0; j < popSize; j++) {
        aux = (double) (NUmax - NUmin) * ((double) j / (popSize - 1));
        prob[j] = (double) (1.0 / (popSize)) * (NUmax - aux);
      }
      for (j = 1; j < popSize; j++) prob[j] = prob[j] + prob[j - 1];

      /*Steady-State Genetic Algorithm*/
      ele = 2;
      population = new RuleSet[popSize];
      while (conjR.size() >= 2) {
        t = 0;

        System.out.println("Producing rules of level " + ele);

        for (i = 0; i < population.length; i++) {
          population[i] = new RuleSet(conjR);
          population[i].computeFitness(data, classData, infoAttr, contenedor, nClasses);
        }

        Arrays.sort(population);

        while (t < numGenerations && !population[0].equals(population[popSize - 1])) {
          System.out.println("Generation " + t);
          t++;

          /*Baker's selection*/
          pos1 = Randomize.Rand();
          pos2 = Randomize.Rand();
          for (l = 0; l < popSize && prob[l] < pos1; l++) ;
          sel1 = l;
          for (l = 0; l < popSize && prob[l] < pos2; l++) ;
          sel2 = l;

          hijo1 = new RuleSet(population[sel1]);
          hijo2 = new RuleSet(population[sel2]);

          if (Randomize.Rand() < pCross) {
            RuleSet.crossover1(hijo1, hijo2);
          } else {
            RuleSet.crossover2(hijo1, hijo2);
          }

          RuleSet.mutation(hijo1, conjR, pMut, data, classData, infoAttr, contenedor, nClasses);
          RuleSet.mutation(hijo2, conjR, pMut, data, classData, infoAttr, contenedor, nClasses);

          hijo1.computeFitness(data, classData, infoAttr, contenedor, nClasses);
          hijo2.computeFitness(data, classData, infoAttr, contenedor, nClasses);

          population[popSize - 2] = new RuleSet(hijo1);
          population[popSize - 1] = new RuleSet(hijo2);

          Arrays.sort(population);
        }

        /*Decode function*/
        ele++;
        conjR.removeAllElements();
        System.out.println(
            "Fitness of the best chromosome in rule level " + ele + ": " + population[0].fitness);
        for (i = 0; i < population[0].getRuleSet().length; i++) {
          if (Math.abs(computeAdjustedResidual(data, classData, population[0].getRule(i), i))
              > 1.96) {
            if (validarRegla(population[0].getRule(i))
                && !contenedor.contains(population[0].getRule(i))) {
              contenedor.add(population[0].getRule(i));
              conjR.add(population[0].getRule(i));
            }
          }
        }
      }

      // Finally we should fill the training and test output files
      doOutput(this.val, this.outputTr, data, classData, infoAttr, contenedor, nClasses);
      doOutput(this.test, this.outputTst, data, classData, infoAttr, contenedor, nClasses);

      /*Print the rule obtained*/
      for (i = contenedor.size() - 1; i >= 0; i--) {
        if (reglaPositiva(
            this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i))) {
          Fichero.AnadirtoFichero(outputRule, contenedor.elementAt(i).toString(train));
          Fichero.AnadirtoFichero(
              outputRule,
              " -> "
                  + consecuente(
                      this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i))
                  + "\n");
        }
      }
      System.out.println("Algorithm Finished");
    }
  }