Ejemplo n.º 1
0
  private void visitAllStartSegments(
      final RoutingContext ctx,
      RouteSegment start,
      PriorityQueue<RouteSegment> graphDirectSegments,
      TLongObjectHashMap<RouteSegment> visitedSegments,
      int startX,
      int startY)
      throws IOException {
    // mark as visited code seems to be duplicated
    long nt = (start.road.getId() << 8l) + start.segmentStart;
    visitedSegments.put(nt, start);
    graphDirectSegments.add(start);

    loadRoutes(
        ctx,
        (startX >> (31 - ctx.getZoomToLoadTileWithRoads())),
        (startY >> (31 - ctx.getZoomToLoadTileWithRoads())));
    long ls = (((long) startX) << 31) + (long) startY;
    RouteSegment startNbs = ctx.routes.get(ls);
    while (startNbs != null) { // startNbs.road.id >> 1, start.road.id >> 1
      if (startNbs.road.getId() != start.road.getId()) {
        startNbs.parentRoute = start;
        startNbs.parentSegmentEnd = start.segmentStart;
        startNbs.distanceToEnd = start.distanceToEnd;

        // duplicated to be sure start is added
        nt = (startNbs.road.getId() << 8l) + startNbs.segmentStart;
        visitedSegments.put(nt, startNbs);
        graphDirectSegments.add(startNbs);
      }
      startNbs = startNbs.next;
    }
  }
Ejemplo n.º 2
0
  private RouteSegment processIntersectionsWithWays(
      RoutingContext ctx,
      PriorityQueue<RouteSegment> graphSegments,
      TLongObjectHashMap<RouteSegment> visitedSegments,
      TLongObjectHashMap<RouteSegment> oppositeSegments,
      double distOnRoadToPass,
      double distToFinalPoint,
      RouteSegment segment,
      BinaryMapDataObject road,
      boolean firstOfSegment,
      int segmentEnd,
      RouteSegment inputNext,
      boolean reverseWay) {

    // This variables can be in routing context
    // initialize temporary lists to calculate not forbidden ways at way intersections
    ArrayList<RouteSegment> segmentsToVisitPrescripted = new ArrayList<RouteSegment>(5);
    ArrayList<RouteSegment> segmentsToVisitNotForbidden = new ArrayList<RouteSegment>(5);
    // collect time for obstacles
    double obstaclesTime = 0;
    boolean exclusiveRestriction = false;

    // 3.1 calculate time for obstacles (bumps, traffic_signals, level_crossing)
    if (firstOfSegment) {
      RouteSegment possibleObstacle = inputNext;
      while (possibleObstacle != null) {
        obstaclesTime +=
            ctx.getRouter().defineObstacle(possibleObstacle.road, possibleObstacle.segmentStart);
        possibleObstacle = possibleObstacle.next;
      }
    }

    // 3.2 calculate possible ways to put into priority queue
    // for debug next.road.getId() >> 1 == 33911427 && road.getId() >> 1 == 33911442
    RouteSegment next = inputNext;
    while (next != null) {
      long nts = (next.road.getId() << 8l) + next.segmentStart;
      boolean oppositeConnectionFound =
          oppositeSegments.containsKey(nts) && oppositeSegments.get(nts) != null;

      boolean processRoad = true;
      if (ctx.isUseStrategyOfIncreasingRoadPriorities()) {
        double roadPriority = ctx.getRouter().getRoadPriorityHeuristicToIncrease(segment.road);
        double nextRoadPriority = ctx.getRouter().getRoadPriorityHeuristicToIncrease(segment.road);
        if (nextRoadPriority < roadPriority) {
          processRoad = false;
        }
      }

      /* next.road.getId() >> 1 (3) != road.getId() >> 1 (3) - used that line for debug with osm map */
      // road.id could be equal on roundabout, but we should accept them
      if ((!visitedSegments.contains(nts) && processRoad) || oppositeConnectionFound) {
        int type = -1;
        if (!reverseWay) {
          for (int i = 0; i < road.getRestrictionCount(); i++) {
            if (road.getRestriction(i) == next.road.getId()) {
              type = road.getRestrictionType(i);
              break;
            }
          }
        } else {
          for (int i = 0; i < next.road.getRestrictionCount(); i++) {
            if (next.road.getRestriction(i) == road.getId()) {
              type = next.road.getRestrictionType(i);
              break;
            }
            // Check if there is restriction only to the current road
            if (next.road.getRestrictionType(i) == MapRenderingTypes.RESTRICTION_ONLY_RIGHT_TURN
                || next.road.getRestrictionType(i) == MapRenderingTypes.RESTRICTION_ONLY_LEFT_TURN
                || next.road.getRestrictionType(i)
                    == MapRenderingTypes.RESTRICTION_ONLY_STRAIGHT_ON) {
              // check if that restriction applies to considered junk
              RouteSegment foundNext = inputNext;
              while (foundNext != null
                  && foundNext.getRoad().getId() != next.road.getRestriction(i)) {
                foundNext = foundNext.next;
              }
              if (foundNext != null) {
                type = REVERSE_WAY_RESTRICTION_ONLY; // special constant
              }
            }
          }
        }
        if (type == REVERSE_WAY_RESTRICTION_ONLY) {
          // next = next.next; continue;
        } else if (type == -1 && exclusiveRestriction) {
          // next = next.next; continue;
        } else if (type == MapRenderingTypes.RESTRICTION_NO_LEFT_TURN
            || type == MapRenderingTypes.RESTRICTION_NO_RIGHT_TURN
            || type == MapRenderingTypes.RESTRICTION_NO_STRAIGHT_ON
            || type == MapRenderingTypes.RESTRICTION_NO_U_TURN) {
          // next = next.next; continue;
        } else {
          // no restriction can go out
          if (oppositeConnectionFound) {
            RouteSegment oppSegment = oppositeSegments.get(nts);
            oppSegment.segmentEnd = next.segmentStart;
            return oppSegment;
          }

          double distanceToEnd = distToFinalPoint / ctx.getRouter().getMaxDefaultSpeed();
          if (ctx.isUseDynamicRoadPrioritising()) {
            double priority = ctx.getRouter().getRoadPriorityToCalculateRoute(next.road);
            distanceToEnd /= priority;
          }

          // Using A* routing algorithm
          // g(x) - calculate distance to that point and calculate time
          double speed = ctx.getRouter().defineSpeed(road);
          if (speed == 0) {
            speed = ctx.getRouter().getMinDefaultSpeed();
          }

          double distanceFromStart = segment.distanceFromStart + distOnRoadToPass / speed;
          // calculate turn time
          distanceFromStart += ctx.getRouter().calculateTurnTime(segment, next, segmentEnd);
          // add obstacles time
          distanceFromStart += obstaclesTime;

          // segment.getRoad().getId() >> 1
          if (next.parentRoute == null
              || ctx.roadPriorityComparator(
                      next.distanceFromStart, next.distanceToEnd, distanceFromStart, distanceToEnd)
                  > 0) {
            next.distanceFromStart = distanceFromStart;
            next.distanceToEnd = distanceToEnd;
            if (next.parentRoute != null) {
              // already in queue remove it
              graphSegments.remove(next);
            }
            // put additional information to recover whole route after
            next.parentRoute = segment;
            next.parentSegmentEnd = segmentEnd;
            if (type == -1) {
              // case no restriction
              segmentsToVisitNotForbidden.add(next);
            } else {
              // case exclusive restriction (only_right, only_straight, ...)
              // 1. in case we are going backward we should not consider only_restriction
              // as exclusive because we have main "in" roads and one "out"
              // 2. in case we are going forward we have one "in" and many "out"
              if (!reverseWay) {
                exclusiveRestriction = true;
                segmentsToVisitNotForbidden.clear();
                segmentsToVisitPrescripted.add(next);
              } else {
                segmentsToVisitNotForbidden.add(next);
              }
            }
          }
        }
      }
      next = next.next;
    }

    // add all allowed route segments to priority queue
    for (RouteSegment s : segmentsToVisitNotForbidden) {
      graphSegments.add(s);
    }
    for (RouteSegment s : segmentsToVisitPrescripted) {
      graphSegments.add(s);
    }
    return null;
  }
Ejemplo n.º 3
0
  /**
   * Calculate route between start.segmentEnd and end.segmentStart (using A* algorithm) return list
   * of segments
   */
  public List<RouteSegmentResult> searchRoute(
      final RoutingContext ctx, RouteSegment start, RouteSegment end) throws IOException {

    // measure time
    ctx.timeToLoad = 0;
    ctx.visitedSegments = 0;
    long startNanoTime = System.nanoTime();

    // Initializing priority queue to visit way segments
    Comparator<RouteSegment> segmentsComparator =
        new Comparator<RouteSegment>() {
          @Override
          public int compare(RouteSegment o1, RouteSegment o2) {
            return ctx.roadPriorityComparator(
                o1.distanceFromStart, o1.distanceToEnd, o2.distanceFromStart, o2.distanceToEnd);
          }
        };

    Comparator<RouteSegment> nonHeuristicSegmentsComparator =
        new Comparator<RouteSegment>() {
          @Override
          public int compare(RouteSegment o1, RouteSegment o2) {
            return roadPriorityComparator(
                o1.distanceFromStart,
                o1.distanceToEnd,
                o2.distanceFromStart,
                o2.distanceToEnd,
                0.5);
          }
        };

    PriorityQueue<RouteSegment> graphDirectSegments =
        new PriorityQueue<RouteSegment>(50, segmentsComparator);
    PriorityQueue<RouteSegment> graphReverseSegments =
        new PriorityQueue<RouteSegment>(50, segmentsComparator);

    // Set to not visit one segment twice (stores road.id << X + segmentStart)
    TLongObjectHashMap<RouteSegment> visitedDirectSegments = new TLongObjectHashMap<RouteSegment>();
    TLongObjectHashMap<RouteSegment> visitedOppositeSegments =
        new TLongObjectHashMap<RouteSegment>();

    int targetEndX = end.road.getPoint31XTile(end.segmentStart);
    int targetEndY = end.road.getPoint31YTile(end.segmentStart);
    int startX = start.road.getPoint31XTile(start.segmentStart);
    int startY = start.road.getPoint31YTile(start.segmentStart);
    // for start : f(start) = g(start) + h(start) = 0 + h(start) = h(start)
    start.distanceToEnd =
        squareRootDist(startX, startY, targetEndX, targetEndY)
            / ctx.getRouter().getMaxDefaultSpeed();
    end.distanceToEnd = start.distanceToEnd;

    // because first point of the start is not visited do the same as in cycle but only for one
    // point
    // it matters when start point is intersection of different roads
    // add start segment to priority queue
    visitAllStartSegments(ctx, start, graphDirectSegments, visitedDirectSegments, startX, startY);
    visitAllStartSegments(
        ctx, end, graphReverseSegments, visitedOppositeSegments, targetEndX, targetEndY);

    // final segment before end
    RouteSegment finalDirectRoute = null;
    RouteSegment finalReverseRoute = null;

    // Extract & analyze segment with min(f(x)) from queue while final segment is not found
    boolean inverse = false;

    PriorityQueue<RouteSegment> graphSegments =
        inverse ? graphReverseSegments : graphDirectSegments;
    while (!graphSegments.isEmpty()) {
      RouteSegment segment = graphSegments.poll();

      ctx.visitedSegments++;
      // for debug purposes
      if (ctx.visitor != null) {
        ctx.visitor.visitSegment(segment);
      }
      if (!inverse) {
        RoutePair pair =
            processRouteSegment(
                ctx,
                end,
                false,
                graphDirectSegments,
                visitedDirectSegments,
                targetEndX,
                targetEndY,
                segment,
                visitedOppositeSegments);
        if (pair != null) {
          finalDirectRoute = pair.a;
          finalReverseRoute = pair.b;
          break;
        }
      } else {
        RoutePair pair =
            processRouteSegment(
                ctx,
                start,
                true,
                graphReverseSegments,
                visitedOppositeSegments,
                startX,
                startY,
                segment,
                visitedDirectSegments);
        if (pair != null) {
          finalReverseRoute = pair.a;
          finalDirectRoute = pair.b;
          break;
        }
      }
      if (graphReverseSegments.isEmpty() || graphDirectSegments.isEmpty()) {
        break;
      }
      if (ctx.planRouteIn2Directions()) {
        inverse =
            nonHeuristicSegmentsComparator.compare(
                    graphDirectSegments.peek(), graphReverseSegments.peek())
                > 0;
        // make it more simmetrical with dynamic prioritizing it makes big sense
        //				inverse = !inverse;
      } else {
        // different strategy : use onedirectional graph
        inverse = !ctx.getPlanRoadDirection().booleanValue();
      }
      graphSegments = inverse ? graphReverseSegments : graphDirectSegments;
    }

    // 4. Route is found : collect all segments and prepare result
    return prepareResult(ctx, start, end, startNanoTime, finalDirectRoute, finalReverseRoute);
  }