示例#1
0
  /**
   * Returns a String representation of a feature subset
   *
   * @param sub BitSet representation of a subset
   * @return String containing subset
   */
  private String printSub(BitSet sub) {

    String s = "";
    for (int jj = 0; jj < m_numAttributes; jj++) {
      if (sub.get(jj)) {
        s += " " + (jj + 1);
      }
    }
    return s;
  }
示例#2
0
    public double evaluateSubset(BitSet subset) throws Exception {

      int fc = 0;
      for (int jj = 0; jj < m_numAttributes; jj++) {
        if (subset.get(jj)) {
          fc++;
        }
      }

      return estimatePerformance(subset, fc);
    }
示例#3
0
  /**
   * Evaluates a feature subset by cross validation
   *
   * @param feature_set the subset to be evaluated
   * @param num_atts the number of attributes in the subset
   * @return the estimated accuracy
   * @throws Exception if subset can't be evaluated
   */
  protected double estimatePerformance(BitSet feature_set, int num_atts) throws Exception {

    m_evaluation = new Evaluation(m_theInstances);
    int i;
    int[] fs = new int[num_atts];

    double[] instA = new double[num_atts];
    int classI = m_theInstances.classIndex();

    int index = 0;
    for (i = 0; i < m_numAttributes; i++) {
      if (feature_set.get(i)) {
        fs[index++] = i;
      }
    }

    // create new hash table
    m_entries = new Hashtable((int) (m_theInstances.numInstances() * 1.5));

    // insert instances into the hash table
    for (i = 0; i < m_numInstances; i++) {

      Instance inst = m_theInstances.instance(i);
      for (int j = 0; j < fs.length; j++) {
        if (fs[j] == classI) {
          instA[j] = Double.MAX_VALUE; // missing for the class
        } else if (inst.isMissing(fs[j])) {
          instA[j] = Double.MAX_VALUE;
        } else {
          instA[j] = inst.value(fs[j]);
        }
      }
      insertIntoTable(inst, instA);
    }

    if (m_CVFolds == 1) {

      // calculate leave one out error
      for (i = 0; i < m_numInstances; i++) {
        Instance inst = m_theInstances.instance(i);
        for (int j = 0; j < fs.length; j++) {
          if (fs[j] == classI) {
            instA[j] = Double.MAX_VALUE; // missing for the class
          } else if (inst.isMissing(fs[j])) {
            instA[j] = Double.MAX_VALUE;
          } else {
            instA[j] = inst.value(fs[j]);
          }
        }
        evaluateInstanceLeaveOneOut(inst, instA);
      }
    } else {
      m_theInstances.randomize(m_rr);
      m_theInstances.stratify(m_CVFolds);

      // calculate 10 fold cross validation error
      for (i = 0; i < m_CVFolds; i++) {
        Instances insts = m_theInstances.testCV(m_CVFolds, i);
        evaluateFoldCV(insts, fs);
      }
    }

    switch (m_evaluationMeasure) {
      case EVAL_DEFAULT:
        if (m_classIsNominal) {
          return m_evaluation.pctCorrect();
        }
        return -m_evaluation.rootMeanSquaredError();
      case EVAL_ACCURACY:
        return m_evaluation.pctCorrect();
      case EVAL_RMSE:
        return -m_evaluation.rootMeanSquaredError();
      case EVAL_MAE:
        return -m_evaluation.meanAbsoluteError();
      case EVAL_AUC:
        double[] classPriors = m_evaluation.getClassPriors();
        Utils.normalize(classPriors);
        double weightedAUC = 0;
        for (i = 0; i < m_theInstances.classAttribute().numValues(); i++) {
          double tempAUC = m_evaluation.areaUnderROC(i);
          if (!Utils.isMissingValue(tempAUC)) {
            weightedAUC += (classPriors[i] * tempAUC);
          } else {
            System.err.println("Undefined AUC!!");
          }
        }
        return weightedAUC;
    }
    // shouldn't get here
    return 0.0;
  }