示例#1
0
 public static KMeansScore score(KMeansModel model, ValueArray ary) {
   KMeansScore kms = new KMeansScore();
   kms._arykey = ary._key;
   kms._cols = model.columnMapping(ary.colNames());
   kms._clusters = model._clusters;
   kms._normalized = model._normalized;
   kms.invoke(ary._key);
   return kms;
 }
示例#2
0
 /**
  * This helper creates a ModelMetricsClustering from a trained model
  *
  * @param model, must contain valid statistics from training, such as _betweenss etc.
  */
 private ModelMetricsClustering makeTrainingMetrics(KMeansModel model) {
   ModelMetricsClustering mm = new ModelMetricsClustering(model, model._parms.train());
   mm._size = model._output._size;
   mm._withinss = model._output._withinss;
   mm._betweenss = model._output._betweenss;
   mm._totss = model._output._totss;
   mm._tot_withinss = model._output._tot_withinss;
   model.addMetrics(mm);
   return mm;
 }
示例#3
0
    // Main worker thread
    @Override
    protected void compute2() {

      KMeansModel model = null;
      try {
        init(true);
        // Do lock even before checking the errors, since this block is finalized by unlock
        // (not the best solution, but the code is more readable)
        _parms.read_lock_frames(KMeans.this); // Fetch & read-lock input frames
        // Something goes wrong
        if (error_count() > 0)
          throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(KMeans.this);
        // The model to be built
        model = new KMeansModel(dest(), _parms, new KMeansModel.KMeansOutput(KMeans.this));
        model.delete_and_lock(_key);

        //
        final Vec vecs[] = _train.vecs();
        // mults & means for standardization
        final double[] means = _train.means(); // means are used to impute NAs
        final double[] mults = _parms._standardize ? _train.mults() : null;
        final int[] impute_cat = new int[vecs.length];
        for (int i = 0; i < vecs.length; i++)
          impute_cat[i] = vecs[i].isNumeric() ? -1 : DataInfo.imputeCat(vecs[i]);
        model._output._normSub = means;
        model._output._normMul = mults;
        // Initialize cluster centers and standardize if requested
        double[][] centers = initial_centers(model, vecs, means, mults, impute_cat);
        if (centers == null) return; // Stopped/cancelled during center-finding
        double[][] oldCenters = null;

        // ---
        // Run the main KMeans Clustering loop
        // Stop after enough iterations or average_change < TOLERANCE
        model._output._iterations =
            0; // Loop ends only when iterations > max_iterations with strict inequality
        while (!isDone(model, centers, oldCenters)) {
          Lloyds task =
              new Lloyds(centers, means, mults, impute_cat, _isCats, _parms._k, hasWeightCol())
                  .doAll(vecs);
          // Pick the max categorical level for cluster center
          max_cats(task._cMeans, task._cats, _isCats);

          // Handle the case where some centers go dry.  Rescue only 1 cluster
          // per iteration ('cause we only tracked the 1 worst row)
          if (cleanupBadClusters(task, vecs, centers, means, mults, impute_cat)) continue;

          // Compute model stats; update standardized cluster centers
          oldCenters = centers;
          centers = computeStatsFillModel(task, model, vecs, means, mults, impute_cat);

          model.update(_key); // Update model in K/V store
          update(1); // One unit of work
          if (model._parms._score_each_iteration) Log.info(model._output._model_summary);
        }

        Log.info(model._output._model_summary);
        //        Log.info(model._output._scoring_history);
        //
        // Log.info(((ModelMetricsClustering)model._output._training_metrics).createCentroidStatsTable().toString());

        // At the end: validation scoring (no need to gather scoring history)
        if (_valid != null) {
          model.score(_parms.valid()).delete(); // this appends a ModelMetrics on the validation set
          model._output._validation_metrics = ModelMetrics.getFromDKV(model, _parms.valid());
          model.update(_key); // Update model in K/V store
        }
        done(); // Job done!

      } catch (Throwable t) {
        Job thisJob = DKV.getGet(_key);
        if (thisJob._state == JobState.CANCELLED) {
          Log.info("Job cancelled by user.");
        } else {
          t.printStackTrace();
          failed(t);
          throw t;
        }
      } finally {
        updateModelOutput();
        if (model != null) model.unlock(_key);
        _parms.read_unlock_frames(KMeans.this);
      }
      tryComplete();
    }
示例#4
0
    // Initialize cluster centers
    double[][] initial_centers(
        KMeansModel model,
        final Vec[] vecs,
        final double[] means,
        final double[] mults,
        final int[] modes) {

      // Categoricals use a different distance metric than numeric columns.
      model._output._categorical_column_count = 0;
      _isCats = new String[vecs.length][];
      for (int v = 0; v < vecs.length; v++) {
        _isCats[v] = vecs[v].isCategorical() ? new String[0] : null;
        if (_isCats[v] != null) model._output._categorical_column_count++;
      }

      Random rand = water.util.RandomUtils.getRNG(_parms._seed - 1);
      double centers[][]; // Cluster centers
      if (null != _parms._user_points) { // User-specified starting points
        Frame user_points = _parms._user_points.get();
        int numCenters = (int) user_points.numRows();
        int numCols = model._output.nfeatures();
        centers = new double[numCenters][numCols];
        Vec[] centersVecs = user_points.vecs();
        // Get the centers and standardize them if requested
        for (int r = 0; r < numCenters; r++) {
          for (int c = 0; c < numCols; c++) {
            centers[r][c] = centersVecs[c].at(r);
            centers[r][c] = data(centers[r][c], c, means, mults, modes);
          }
        }
      } else { // Random, Furthest, or PlusPlus initialization
        if (_parms._init == Initialization.Random) {
          // Initialize all cluster centers to random rows
          centers = new double[_parms._k][model._output.nfeatures()];
          for (double[] center : centers) randomRow(vecs, rand, center, means, mults, modes);
        } else {
          centers = new double[1][model._output.nfeatures()];
          // Initialize first cluster center to random row
          randomRow(vecs, rand, centers[0], means, mults, modes);

          model._output._iterations = 0;
          while (model._output._iterations < 5) {
            // Sum squares distances to cluster center
            SumSqr sqr = new SumSqr(centers, means, mults, modes, _isCats).doAll(vecs);

            // Sample with probability inverse to square distance
            Sampler sampler =
                new Sampler(
                        centers,
                        means,
                        mults,
                        modes,
                        _isCats,
                        sqr._sqr,
                        _parms._k * 3,
                        _parms._seed,
                        hasWeightCol())
                    .doAll(vecs);
            centers = ArrayUtils.append(centers, sampler._sampled);

            // Fill in sample centers into the model
            if (!isRunning()) return null; // Stopped/cancelled
            model._output._centers_raw = destandardize(centers, _isCats, means, mults);
            model._output._tot_withinss = sqr._sqr / _train.numRows();

            model._output._iterations++; // One iteration done

            model.update(
                _key); // Make early version of model visible, but don't update progress using
            // update(1)
          }
          // Recluster down to k cluster centers
          centers = recluster(centers, rand, _parms._k, _parms._init, _isCats);
          model._output._iterations = 0; // Reset iteration count
        }
      }
      return centers;
    }