示例#1
0
  /** Test of learn method, of class RDA. */
  @Test
  public void testUSPS() {
    System.out.println("USPS");
    DelimitedTextParser parser = new DelimitedTextParser();
    parser.setResponseIndex(new NominalAttribute("class"), 0);
    try {
      AttributeDataset train =
          parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
      AttributeDataset test =
          parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test"));

      double[][] x = train.toArray(new double[train.size()][]);
      int[] y = train.toArray(new int[train.size()]);
      double[][] testx = test.toArray(new double[test.size()][]);
      int[] testy = test.toArray(new int[test.size()]);

      RDA rda = new RDA(x, y, 0.7);

      int error = 0;
      for (int i = 0; i < testx.length; i++) {
        if (rda.predict(testx[i]) != testy[i]) {
          error++;
        }
      }

      System.out.format("USPS error rate = %.2f%%%n", 100.0 * error / testx.length);
      assertEquals(235, error);
    } catch (Exception ex) {
      System.err.println(ex);
    }
  }
示例#2
0
文件: MECTest.java 项目: ct1104/smile
  /** Test of learn method, of class MEC. */
  @Test
  public void testUSPS() {
    System.out.println("USPS");
    DelimitedTextParser parser = new DelimitedTextParser();
    parser.setResponseIndex(new NominalAttribute("class"), 0);
    try {
      AttributeDataset train =
          parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
      AttributeDataset test =
          parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test"));

      double[][] x = train.toArray(new double[train.size()][]);
      int[] y = train.toArray(new int[train.size()]);
      double[][] testx = test.toArray(new double[test.size()][]);
      int[] testy = test.toArray(new int[test.size()]);

      AdjustedRandIndex ari = new AdjustedRandIndex();
      RandIndex rand = new RandIndex();
      MEC<double[]> mec = new MEC<double[]>(x, new EuclideanDistance(), 10, 8.0);

      double r = rand.measure(y, mec.getClusterLabel());
      double r2 = ari.measure(y, mec.getClusterLabel());
      System.out.format(
          "Training rand index = %.2f%%\tadjusted rand index = %.2f%%\n", 100.0 * r, 100.0 * r2);
      assertTrue(r > 0.85);
      assertTrue(r2 > 0.35);

      int[] p = new int[testx.length];
      for (int i = 0; i < testx.length; i++) {
        p[i] = mec.predict(testx[i]);
      }

      r = rand.measure(testy, p);
      r2 = ari.measure(testy, p);
      System.out.format(
          "Testing rand index = %.2f%%\tadjusted rand index = %.2f%%\n", 100.0 * r, 100.0 * r2);
      assertTrue(r > 0.85);
      assertTrue(r2 > 0.35);
    } catch (Exception ex) {
      System.err.println(ex);
    }
  }
示例#3
0
  public CoverTreeSpeedTest() {
    long start = System.currentTimeMillis();
    DelimitedTextParser parser = new DelimitedTextParser();
    parser.setResponseIndex(new NominalAttribute("class"), 0);
    try {
      AttributeDataset train =
          parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
      AttributeDataset test =
          parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test"));

      x = train.toArray(new double[train.size()][]);
      testx = test.toArray(new double[test.size()][]);
    } catch (Exception ex) {
      System.err.println(ex);
    }

    double time = (System.currentTimeMillis() - start) / 1000.0;
    System.out.format("Loading data: %.2fs\n", time);

    start = System.currentTimeMillis();
    coverTree = new CoverTree<double[]>(x, new EuclideanDistance());
    time = (System.currentTimeMillis() - start) / 1000.0;
    System.out.format("Building cover tree: %.2fs\n", time);
  }