/** * sdf The test main * * @param args ignored */ public static void main(String[] args) { // Instance[] instances = new Instance[100]; // for (int i = 0; i < instances.length; i++) { // double[] data = new double[2]; // data[0] = Math.sin(i/2.0); // data[1] = (Math.random() - .5)*2; // instances[i] = new Instance(data); // } DataSet set = new DataSet(trainInstances); System.out.println("Before randomizing"); System.out.println(set); // Matrix projection = new RectangularMatrix(new double[][]{ {.6, .6}, {.4, .6}}); Matrix projection = new RectangularMatrix(new double[][] {{.1, .1}, {.1, .1}}); for (int i = 0; i < set.size(); i++) { Instance instance = set.get(i); instance.setData(projection.times(instance.getData())); } System.out.println("Before ICA"); System.out.println(set); IndependentComponentAnalysis filter = new IndependentComponentAnalysis(set, 1); filter.filter(set); System.out.println("After ICA"); System.out.println(set); }
public static void main(String[] args) { Instance[] instances = DataHard.IRIS; DataSet set = new DataSet(instances); System.out.println("Before ICA"); System.out.println(set); int components = 3; IndependentComponentAnalysis filter = new IndependentComponentAnalysis(set, components); filter.filter(set); System.out.println("After ICA"); System.out.println(set); }