/** * Appends a new keyFrame to the path, with its associated {@code time} (in seconds). * * <p>When {@code setRef} is {@code false} the keyFrame is added by value, meaning that the path * will use the current {@code frame} state. * * <p>When {@code setRef} is {@code true} the keyFrame is given as a reference to a Frame, which * will be connected to the KeyFrameInterpolator: when {@code frame} is modified, the * KeyFrameInterpolator path is updated accordingly. This allows for dynamic paths, where keyFrame * can be edited, even during the interpolation. {@code null} frame references are silently * ignored. The {@link #keyFrameTime(int)} has to be monotonously increasing over keyFrames. */ public void addKeyFrame(GenericFrame frame, float time) { if (frame == null) return; if (keyFrameList.isEmpty()) interpolationTm = time; if ((!keyFrameList.isEmpty()) && (keyFrameList.get(keyFrameList.size() - 1).time() > time)) System.out.println("Error in KeyFrameInterpolator.addKeyFrame: time is not monotone"); else { if (gScene.is3D()) keyFrameList.add(new KeyFrame3D(frame, time)); else keyFrameList.add(new KeyFrame2D(frame, time)); } valuesAreValid = false; pathIsValid = false; currentFrmValid = false; resetInterpolation(); }
/** Intenal use. Call {@link #checkValidity()} and if path is not valid recomputes it. */ protected void updatePath() { checkValidity(); if (!pathIsValid) { path.clear(); int nbSteps = 30; if (keyFrameList.isEmpty()) return; if (!valuesAreValid) updateModifiedFrameValues(); if (keyFrameList.get(0) == keyFrameList.get(keyFrameList.size() - 1)) // TODO experimenting really path.add( new Frame( keyFrameList.get(0).position(), keyFrameList.get(0).orientation(), keyFrameList.get(0).magnitude())); else { KeyFrame[] kf = new KeyFrame[4]; kf[0] = keyFrameList.get(0); kf[1] = kf[0]; int index = 1; kf[2] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; index++; kf[3] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; while (kf[2] != null) { Vec pdiff = Vec.subtract(kf[2].position(), kf[1].position()); Vec pvec1 = Vec.add(Vec.multiply(pdiff, 3.0f), Vec.multiply(kf[1].tgP(), (-2.0f))); pvec1 = Vec.subtract(pvec1, kf[2].tgP()); Vec pvec2 = Vec.add(Vec.multiply(pdiff, (-2.0f)), kf[1].tgP()); pvec2 = Vec.add(pvec2, kf[2].tgP()); for (int step = 0; step < nbSteps; ++step) { Frame frame = new Frame(); float alpha = step / (float) nbSteps; frame.setPosition( Vec.add( kf[1].position(), Vec.multiply( Vec.add( kf[1].tgP(), Vec.multiply(Vec.add(pvec1, Vec.multiply(pvec2, alpha)), alpha)), alpha))); if (gScene.is3D()) { frame.setOrientation( Quat.squad( (Quat) kf[1].orientation(), ((KeyFrame3D) kf[1]).tgQ(), ((KeyFrame3D) kf[2]).tgQ(), (Quat) kf[2].orientation(), alpha)); } else { // linear interpolation float start = kf[1].orientation().angle(); float stop = kf[2].orientation().angle(); frame.setOrientation(new Rot(start + (stop - start) * alpha)); } frame.setMagnitude(Util.lerp(kf[1].magnitude(), kf[2].magnitude(), alpha)); path.add(frame.get()); } // Shift kf[0] = kf[1]; kf[1] = kf[2]; kf[2] = kf[3]; index++; kf[3] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; } // Add last KeyFrame path.add(new Frame(kf[1].position(), kf[1].orientation(), kf[1].magnitude())); } pathIsValid = true; } }