/** * This method builds a decision tree model * * @param sparkContext JavaSparkContext initialized with the application * @param modelID Model ID * @param trainingData Training data as a JavaRDD of LabeledPoints * @param testingData Testing data as a JavaRDD of LabeledPoints * @param workflow Machine learning workflow * @param mlModel Deployable machine learning model * @throws MLModelBuilderException */ private ModelSummary buildDecisionTreeModel( JavaSparkContext sparkContext, long modelID, JavaRDD<LabeledPoint> trainingData, JavaRDD<LabeledPoint> testingData, Workflow workflow, MLModel mlModel, SortedMap<Integer, String> includedFeatures, Map<Integer, Integer> categoricalFeatureInfo) throws MLModelBuilderException { try { Map<String, String> hyperParameters = workflow.getHyperParameters(); DecisionTree decisionTree = new DecisionTree(); DecisionTreeModel decisionTreeModel = decisionTree.train( trainingData, getNoOfClasses(mlModel), categoricalFeatureInfo, hyperParameters.get(MLConstants.IMPURITY), Integer.parseInt(hyperParameters.get(MLConstants.MAX_DEPTH)), Integer.parseInt(hyperParameters.get(MLConstants.MAX_BINS))); // remove from cache trainingData.unpersist(); // add test data to cache testingData.cache(); JavaPairRDD<Double, Double> predictionsAndLabels = decisionTree.test(decisionTreeModel, testingData).cache(); ClassClassificationAndRegressionModelSummary classClassificationAndRegressionModelSummary = SparkModelUtils.getClassClassificationModelSummary( sparkContext, testingData, predictionsAndLabels); // remove from cache testingData.unpersist(); mlModel.setModel(new MLDecisionTreeModel(decisionTreeModel)); classClassificationAndRegressionModelSummary.setFeatures( includedFeatures.values().toArray(new String[0])); classClassificationAndRegressionModelSummary.setAlgorithm( SUPERVISED_ALGORITHM.DECISION_TREE.toString()); MulticlassMetrics multiclassMetrics = getMulticlassMetrics(sparkContext, predictionsAndLabels); predictionsAndLabels.unpersist(); classClassificationAndRegressionModelSummary.setMulticlassConfusionMatrix( getMulticlassConfusionMatrix(multiclassMetrics, mlModel)); Double modelAccuracy = getModelAccuracy(multiclassMetrics); classClassificationAndRegressionModelSummary.setModelAccuracy(modelAccuracy); classClassificationAndRegressionModelSummary.setDatasetVersion(workflow.getDatasetVersion()); return classClassificationAndRegressionModelSummary; } catch (Exception e) { throw new MLModelBuilderException( "An error occurred while building decision tree model: " + e.getMessage(), e); } }
/** * This method builds a naive bayes model * * @param sparkContext JavaSparkContext initialized with the application * @param modelID Model ID * @param trainingData Training data as a JavaRDD of LabeledPoints * @param testingData Testing data as a JavaRDD of LabeledPoints * @param workflow Machine learning workflow * @param mlModel Deployable machine learning model * @throws MLModelBuilderException */ private ModelSummary buildNaiveBayesModel( JavaSparkContext sparkContext, long modelID, JavaRDD<LabeledPoint> trainingData, JavaRDD<LabeledPoint> testingData, Workflow workflow, MLModel mlModel, SortedMap<Integer, String> includedFeatures) throws MLModelBuilderException { try { Map<String, String> hyperParameters = workflow.getHyperParameters(); NaiveBayesClassifier naiveBayesClassifier = new NaiveBayesClassifier(); NaiveBayesModel naiveBayesModel = naiveBayesClassifier.train( trainingData, Double.parseDouble(hyperParameters.get(MLConstants.LAMBDA))); // remove from cache trainingData.unpersist(); // add test data to cache testingData.cache(); JavaPairRDD<Double, Double> predictionsAndLabels = naiveBayesClassifier.test(naiveBayesModel, testingData).cache(); ClassClassificationAndRegressionModelSummary classClassificationAndRegressionModelSummary = SparkModelUtils.getClassClassificationModelSummary( sparkContext, testingData, predictionsAndLabels); // remove from cache testingData.unpersist(); mlModel.setModel(new MLClassificationModel(naiveBayesModel)); classClassificationAndRegressionModelSummary.setFeatures( includedFeatures.values().toArray(new String[0])); classClassificationAndRegressionModelSummary.setAlgorithm( SUPERVISED_ALGORITHM.NAIVE_BAYES.toString()); MulticlassMetrics multiclassMetrics = getMulticlassMetrics(sparkContext, predictionsAndLabels); predictionsAndLabels.unpersist(); classClassificationAndRegressionModelSummary.setMulticlassConfusionMatrix( getMulticlassConfusionMatrix(multiclassMetrics, mlModel)); Double modelAccuracy = getModelAccuracy(multiclassMetrics); classClassificationAndRegressionModelSummary.setModelAccuracy(modelAccuracy); classClassificationAndRegressionModelSummary.setDatasetVersion(workflow.getDatasetVersion()); return classClassificationAndRegressionModelSummary; } catch (Exception e) { throw new MLModelBuilderException( "An error occurred while building naive bayes model: " + e.getMessage(), e); } }
/** * A utility method to pre-process data * * @param sc JavaSparkContext * @param workflow Machine learning workflow * @param lines JavaRDD of strings * @param headerRow HeaderFilter row * @param columnSeparator Column separator * @return Returns a JavaRDD of doubles * @throws org.wso2.carbon.ml.model.exceptions.ModelServiceException */ public static JavaRDD<double[]> preProcess(MLModelConfigurationContext context) throws DatasetPreProcessingException { JavaSparkContext sc = context.getSparkContext(); Workflow workflow = context.getFacts(); JavaRDD<String> lines = context.getLines(); String headerRow = context.getHeaderRow(); String columnSeparator = context.getColumnSeparator(); Map<String, String> summaryStatsOfFeatures = context.getSummaryStatsOfFeatures(); List<Integer> newToOldIndicesList = context.getNewToOldIndicesList(); int responseIndex = context.getResponseIndex(); List<Map<String, Integer>> encodings = buildEncodings( workflow.getFeatures(), summaryStatsOfFeatures, newToOldIndicesList, responseIndex); context.setEncodings(encodings); // Apply the filter to discard rows with missing values. JavaRDD<String[]> tokensDiscardedRemoved = MLUtils.filterRows( columnSeparator, headerRow, lines, MLUtils.getImputeFeatureIndices( workflow, new ArrayList<Integer>(), MLConstants.DISCARD)); JavaRDD<String[]> filteredTokens = tokensDiscardedRemoved.map(new RemoveDiscardedFeatures(newToOldIndicesList, responseIndex)); JavaRDD<String[]> encodedTokens = filteredTokens.map(new BasicEncoder(encodings)); JavaRDD<double[]> features = null; // get feature indices for mean imputation List<Integer> meanImputeIndices = MLUtils.getImputeFeatureIndices(workflow, newToOldIndicesList, MLConstants.MEAN_IMPUTATION); if (meanImputeIndices.size() > 0) { // calculate means for the whole dataset (sampleFraction = 1.0) or a sample Map<Integer, Double> means = getMeans(sc, encodedTokens, meanImputeIndices, 0.01); // Replace missing values in impute indices with the mean for that column MeanImputation meanImputation = new MeanImputation(means); features = encodedTokens.map(meanImputation); } else { /** * Mean imputation mapper will convert string tokens to doubles as a part of the operation. If * there is no mean imputation for any columns, tokens has to be converted into doubles. */ features = encodedTokens.map(new StringArrayToDoubleArray()); } return features; }
/** * This method builds a lasso regression model * * @param sparkContext JavaSparkContext initialized with the application * @param modelID Model ID * @param trainingData Training data as a JavaRDD of LabeledPoints * @param testingData Testing data as a JavaRDD of LabeledPoints * @param workflow Machine learning workflow * @param mlModel Deployable machine learning model * @throws MLModelBuilderException */ private ModelSummary buildLassoRegressionModel( JavaSparkContext sparkContext, long modelID, JavaRDD<LabeledPoint> trainingData, JavaRDD<LabeledPoint> testingData, Workflow workflow, MLModel mlModel, SortedMap<Integer, String> includedFeatures) throws MLModelBuilderException { try { LassoRegression lassoRegression = new LassoRegression(); Map<String, String> hyperParameters = workflow.getHyperParameters(); LassoModel lassoModel = lassoRegression.train( trainingData, Integer.parseInt(hyperParameters.get(MLConstants.ITERATIONS)), Double.parseDouble(hyperParameters.get(MLConstants.LEARNING_RATE)), Double.parseDouble(hyperParameters.get(MLConstants.REGULARIZATION_PARAMETER)), Double.parseDouble(hyperParameters.get(MLConstants.SGD_DATA_FRACTION))); // remove from cache trainingData.unpersist(); // add test data to cache testingData.cache(); Vector weights = lassoModel.weights(); if (!isValidWeights(weights)) { throw new MLModelBuilderException( "Weights of the model generated are null or infinity. [Weights] " + vectorToString(weights)); } JavaRDD<Tuple2<Double, Double>> predictionsAndLabels = lassoRegression.test(lassoModel, testingData).cache(); ClassClassificationAndRegressionModelSummary regressionModelSummary = SparkModelUtils.generateRegressionModelSummary( sparkContext, testingData, predictionsAndLabels); // remove from cache testingData.unpersist(); mlModel.setModel(new MLGeneralizedLinearModel(lassoModel)); List<FeatureImportance> featureWeights = getFeatureWeights(includedFeatures, lassoModel.weights().toArray()); regressionModelSummary.setFeatures(includedFeatures.values().toArray(new String[0])); regressionModelSummary.setAlgorithm(SUPERVISED_ALGORITHM.LASSO_REGRESSION.toString()); regressionModelSummary.setFeatureImportance(featureWeights); RegressionMetrics regressionMetrics = getRegressionMetrics(sparkContext, predictionsAndLabels); predictionsAndLabels.unpersist(); Double meanSquaredError = regressionMetrics.meanSquaredError(); regressionModelSummary.setMeanSquaredError(meanSquaredError); regressionModelSummary.setDatasetVersion(workflow.getDatasetVersion()); return regressionModelSummary; } catch (Exception e) { throw new MLModelBuilderException( "An error occurred while building lasso regression model: " + e.getMessage(), e); } }
/** * This method builds a support vector machine (SVM) model * * @param sparkContext JavaSparkContext initialized with the application * @param modelID Model ID * @param trainingData Training data as a JavaRDD of LabeledPoints * @param testingData Testing data as a JavaRDD of LabeledPoints * @param workflow Machine learning workflow * @param mlModel Deployable machine learning model * @throws MLModelBuilderException */ private ModelSummary buildSVMModel( JavaSparkContext sparkContext, long modelID, JavaRDD<LabeledPoint> trainingData, JavaRDD<LabeledPoint> testingData, Workflow workflow, MLModel mlModel, SortedMap<Integer, String> includedFeatures) throws MLModelBuilderException { if (getNoOfClasses(mlModel) > 2) { throw new MLModelBuilderException( "A binary classification algorithm cannot have more than " + "two distinct values in response variable."); } try { SVM svm = new SVM(); Map<String, String> hyperParameters = workflow.getHyperParameters(); SVMModel svmModel = svm.train( trainingData, Integer.parseInt(hyperParameters.get(MLConstants.ITERATIONS)), hyperParameters.get(MLConstants.REGULARIZATION_TYPE), Double.parseDouble(hyperParameters.get(MLConstants.REGULARIZATION_PARAMETER)), Double.parseDouble(hyperParameters.get(MLConstants.LEARNING_RATE)), Double.parseDouble(hyperParameters.get(MLConstants.SGD_DATA_FRACTION))); // remove from cache trainingData.unpersist(); // add test data to cache testingData.cache(); Vector weights = svmModel.weights(); if (!isValidWeights(weights)) { throw new MLModelBuilderException( "Weights of the model generated are null or infinity. [Weights] " + vectorToString(weights)); } // getting scores and labels without clearing threshold to get confusion matrix JavaRDD<Tuple2<Object, Object>> scoresAndLabelsThresholded = svm.test(svmModel, testingData); MulticlassMetrics multiclassMetrics = new MulticlassMetrics(JavaRDD.toRDD(scoresAndLabelsThresholded)); MulticlassConfusionMatrix multiclassConfusionMatrix = getMulticlassConfusionMatrix(multiclassMetrics, mlModel); svmModel.clearThreshold(); JavaRDD<Tuple2<Object, Object>> scoresAndLabels = svm.test(svmModel, testingData); ProbabilisticClassificationModelSummary probabilisticClassificationModelSummary = SparkModelUtils.generateProbabilisticClassificationModelSummary( sparkContext, testingData, scoresAndLabels); // remove from cache testingData.unpersist(); mlModel.setModel(new MLClassificationModel(svmModel)); List<FeatureImportance> featureWeights = getFeatureWeights(includedFeatures, svmModel.weights().toArray()); probabilisticClassificationModelSummary.setFeatures( includedFeatures.values().toArray(new String[0])); probabilisticClassificationModelSummary.setFeatureImportance(featureWeights); probabilisticClassificationModelSummary.setAlgorithm(SUPERVISED_ALGORITHM.SVM.toString()); probabilisticClassificationModelSummary.setMulticlassConfusionMatrix( multiclassConfusionMatrix); Double modelAccuracy = getModelAccuracy(multiclassMetrics); probabilisticClassificationModelSummary.setModelAccuracy(modelAccuracy); probabilisticClassificationModelSummary.setDatasetVersion(workflow.getDatasetVersion()); return probabilisticClassificationModelSummary; } catch (Exception e) { throw new MLModelBuilderException( "An error occurred while building SVM model: " + e.getMessage(), e); } }
/** Build a supervised model. */ public MLModel build() throws MLModelBuilderException { MLModelConfigurationContext context = getContext(); JavaSparkContext sparkContext = null; DatabaseService databaseService = MLCoreServiceValueHolder.getInstance().getDatabaseService(); MLModel mlModel = new MLModel(); try { sparkContext = context.getSparkContext(); Workflow workflow = context.getFacts(); long modelId = context.getModelId(); // Verify validity of response variable String typeOfResponseVariable = getTypeOfResponseVariable(workflow.getResponseVariable(), workflow.getFeatures()); if (typeOfResponseVariable == null) { throw new MLModelBuilderException( "Type of response variable cannot be null for supervised learning " + "algorithms."); } // Stops model building if a categorical attribute is used with numerical prediction if (workflow.getAlgorithmClass().equals(AlgorithmType.NUMERICAL_PREDICTION.getValue()) && typeOfResponseVariable.equals(FeatureType.CATEGORICAL)) { throw new MLModelBuilderException( "Categorical attribute " + workflow.getResponseVariable() + " cannot be used as the response variable of the Numerical Prediction algorithm: " + workflow.getAlgorithmName()); } // generate train and test datasets by converting tokens to labeled points int responseIndex = context.getResponseIndex(); SortedMap<Integer, String> includedFeatures = MLUtils.getIncludedFeaturesAfterReordering( workflow, context.getNewToOldIndicesList(), responseIndex); // gets the pre-processed dataset JavaRDD<LabeledPoint> labeledPoints = preProcess().cache(); JavaRDD<LabeledPoint>[] dataSplit = labeledPoints.randomSplit( new double[] {workflow.getTrainDataFraction(), 1 - workflow.getTrainDataFraction()}, MLConstants.RANDOM_SEED); // remove from cache labeledPoints.unpersist(); JavaRDD<LabeledPoint> trainingData = dataSplit[0].cache(); JavaRDD<LabeledPoint> testingData = dataSplit[1]; // create a deployable MLModel object mlModel.setAlgorithmName(workflow.getAlgorithmName()); mlModel.setAlgorithmClass(workflow.getAlgorithmClass()); mlModel.setFeatures(workflow.getIncludedFeatures()); mlModel.setResponseVariable(workflow.getResponseVariable()); mlModel.setEncodings(context.getEncodings()); mlModel.setNewToOldIndicesList(context.getNewToOldIndicesList()); mlModel.setResponseIndex(responseIndex); ModelSummary summaryModel = null; Map<Integer, Integer> categoricalFeatureInfo; // build a machine learning model according to user selected algorithm SUPERVISED_ALGORITHM supervisedAlgorithm = SUPERVISED_ALGORITHM.valueOf(workflow.getAlgorithmName()); switch (supervisedAlgorithm) { case LOGISTIC_REGRESSION: summaryModel = buildLogisticRegressionModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures, true); break; case LOGISTIC_REGRESSION_LBFGS: summaryModel = buildLogisticRegressionModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures, false); break; case DECISION_TREE: categoricalFeatureInfo = getCategoricalFeatureInfo(context.getEncodings()); summaryModel = buildDecisionTreeModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures, categoricalFeatureInfo); break; case RANDOM_FOREST: categoricalFeatureInfo = getCategoricalFeatureInfo(context.getEncodings()); summaryModel = buildRandomForestTreeModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures, categoricalFeatureInfo); break; case SVM: summaryModel = buildSVMModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures); break; case NAIVE_BAYES: summaryModel = buildNaiveBayesModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures); break; case LINEAR_REGRESSION: summaryModel = buildLinearRegressionModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures); break; case RIDGE_REGRESSION: summaryModel = buildRidgeRegressionModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures); break; case LASSO_REGRESSION: summaryModel = buildLassoRegressionModel( sparkContext, modelId, trainingData, testingData, workflow, mlModel, includedFeatures); break; default: throw new AlgorithmNameException("Incorrect algorithm name"); } // persist model summary databaseService.updateModelSummary(modelId, summaryModel); return mlModel; } catch (Exception e) { throw new MLModelBuilderException( "An error occurred while building supervised machine learning model: " + e.getMessage(), e); } }