示例#1
0
  public static ThreeLayer copy(
      Map map, int hidden, int examples, double learningRate, double initVar) {
    ThreeLayer copy = random(map.dimension(), hidden, initVar, Activations.sigmoid());

    MVN source = new MVN(map.dimension());
    for (int i : series(examples)) {
      Point x = source.generate(), y = map.map(x);

      copy.train(x, y, learningRate);
    }

    return copy;
  }
示例#2
0
    @Override
    public ThreeLayer build(List<Double> parameters) {
      ThreeLayer fnn = new ThreeLayer();

      fnn.n = n;
      fnn.h = h;
      fnn.activation = activation;

      fnn.stateIn = new ArrayRealVector(n + 1);
      fnn.stateIn.setEntry(n, 1.0); // * bias node

      fnn.stateHidden = new ArrayRealVector(h + 1);
      fnn.stateHidden.setEntry(h, 1.0); // * bias node

      fnn.stateOut = new ArrayRealVector(n);

      fnn.weights0 = new Array2DRowRealMatrix(h, n + 1);
      fnn.weights1 = new Array2DRowRealMatrix(n, h + 1);

      fnn.weights0Delta = new Array2DRowRealMatrix(h, n + 1);
      fnn.weights1Delta = new Array2DRowRealMatrix(n, h + 1);

      fnn.gHidden = new ArrayRealVector(h);
      fnn.eHiddenL = new ArrayRealVector(h + 1);
      fnn.eHidden = new ArrayRealVector(h);

      int c = 0;
      for (int i : series(h)) // to
      for (int j : series(n + 1)) // from
        fnn.weights0.setEntry(i, j, parameters.get(c++));
      for (int i : series(n)) // to
      for (int j : series(h + 1)) // from
        fnn.weights1.setEntry(i, j, parameters.get(c++));

      return fnn;
    }