/** * Test the method, returns the sum of all differences between the required and obtained excange * amount. One exception counts as 1000 on the error score. */ public int test() { int s = 0; int e; for (int amount = 20; amount < 100; amount++) { try { if (REPORT_ENABLED) { System.out.println("EXCHANGING " + amount + " "); } // Do not solve cases without solutions if (EXISTING_SOLUTIONS_ONLY) { if (!Force.solve(amount)) { continue; } } // Need to reset the configuration because it needs to be changed each // time when looping. // ------------------------------------------------------------------- DefaultConfiguration.reset(); e = makeChangeForAmount(amount); if (REPORT_ENABLED) { System.out.println(" err " + e); System.out.println("---------------"); } s = s + e; } catch (Exception ex) { ex.printStackTrace(); s += 1000; } } if (REPORT_ENABLED) { System.out.println("Sum of errors " + s); } return s; }
public void run() { Configuration conf = new Configuration(); try { conf.setEventManager(new EventManager()); Thread.sleep(100); } catch (Exception ex) { ex.printStackTrace(); } }
public void run() { Configuration conf = new Configuration(); try { conf.setBulkFitnessFunction(new TestBulkFitnessFunction()); Thread.sleep(100); } catch (Exception ex) { ex.printStackTrace(); } }
/** * Main method. A single command-line argument is expected, which is the volume to create (in * other words, 75 would be equal to 75 ccm). * * @param args first and single element in the array = volume of the knapsack to fill as a double * value * @author Klaus Meffert * @since 2.3 */ public static void main(String[] args) { if (args.length != 1) { System.out.println("Syntax: " + KnapsackMain.class.getName() + " <volume>"); } else { try { double volume = Double.parseDouble(args[0]); if (volume < 1 || volume >= KnapsackFitnessFunction.MAX_BOUND) { System.out.println( "The <volume> argument must be between 1 and " + (KnapsackFitnessFunction.MAX_BOUND - 1) + " and can be a decimal."); } else { try { findItemsForVolume(volume); } catch (Exception e) { e.printStackTrace(); } } } catch (NumberFormatException e) { System.out.println("The <volume> argument must be a valid double value"); } } }
/** * Executes the genetic algorithm to determine the minimum number of items necessary to make up * the given target volume. The solution will then be written to the console. * * @param a_knapsackVolume the target volume for which this method is attempting to produce the * optimal list of items * @throws Exception * @author Klaus Meffert * @throws InvalidConfigurationException * @since 2.3 */ public static void findeBesteParameter() throws InvalidConfigurationException { // Start with a DefaultConfiguration, which comes setup with the // most common settings. // ------------------------------------------------------------- Configuration conf = new myConfiguration(); conf.setPreservFittestIndividual(true); // TODO: check: viel Mehraufwand?? ja! // conf.setAlwaysCaculateFitness(true); // Set the fitness function we want to use. We construct it with // the target volume passed in to this method. // --------------------------------------------------------- FitnessFunction myFunc = new EAmyTeamFitnessFunction(); conf.setFitnessFunction(myFunc); // --> myConfiguration // conf.addGeneticOperator(new MutationOperator(conf,2)); // conf.addGeneticOperator(new CrossoverOperator(conf, .2)); // Now we need to tell the Configuration object how we want our // Chromosomes to be setup. We do that by actually creating a // sample Chromosome and then setting it on the Configuration // object. myTeamParameters dummyParam = new myTeamParameters(); // nur fuer min/max Gene[] sampleGenes = new Gene[myTeamParameters.ANZAHL_PARAMETER]; for (int i = 0; i < sampleGenes.length; i++) { sampleGenes[i] = new DoubleGene(conf, dummyParam.getMin(i), dummyParam.getMax(i)); } IChromosome sampleChromosome = new Chromosome(conf, sampleGenes); conf.setSampleChromosome(sampleChromosome); // Finally, we need to tell the Configuration object how many // Chromosomes we want in our population. The more Chromosomes, // the larger number of potential solutions (which is good for // finding the answer), but the longer it will take to evolve // the population (which could be seen as bad). // ------------------------------------------------------------ conf.setPopulationSize(POPULATION_SIZE); // Create random initial population of Chromosomes. // Here we try to read in a previous run via XMLManager.readFile(..) // for demonstration purpose! // ----------------------------------------------------------------- Genotype population; try { Document doc = XMLManager.readFile(new File(XML_FILENAME)); population = XMLManager.getGenotypeFromDocument(conf, doc); // TODO mit zufaelligen auffuellen?? System.out.println("Alte Population aus Datei gelesen!"); } catch (Exception fex) { population = Genotype.randomInitialGenotype(conf); } // Evolve the population. Since we don't know what the best answer // is going to be, we just evolve the max number of times. // --------------------------------------------------------------- for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) { System.out.println("\nPopulation Nr. " + i + ":"); printPopulation(population); population.evolve(); } // Save progress to file. A new run of this example will then be able to // resume where it stopped before! // --------------------------------------------------------------------- // represent Genotype as tree with elements Chromomes and Genes // ------------------------------------------------------------ try { DataTreeBuilder builder = DataTreeBuilder.getInstance(); IDataCreators doc2 = builder.representGenotypeAsDocument(population); // create XML document from generated tree // --------------------------------------- XMLDocumentBuilder docbuilder = new XMLDocumentBuilder(); Document xmlDoc = (Document) docbuilder.buildDocument(doc2); XMLManager.writeFile(xmlDoc, new File(XML_FILENAME)); } catch (Exception e) { e.printStackTrace(); } // Display the best solution we found. // ----------------------------------- IChromosome bestSolutionSoFar = population.getFittestChromosome(); System.out.println( "The best solution has a fitness value of " + bestSolutionSoFar.getFitnessValueDirectly() + " mit folgenden Parametern:"); printChromosom(bestSolutionSoFar, true); }