/** * Executes the genetic algorithm to determine the minimum number of coins necessary to make up * the given target amount of change. The solution will then be written to System.out. * * @param a_targetChangeAmount the target amount of change for which this method is attempting to * produce the minimum number of coins * @param a_doMonitor true: turn on monitoring for later evaluation of evolution progress * @throws Exception * @author Neil Rotstan * @author Klaus Meffert * @since 1.0 */ public static void makeChangeForAmount(int a_targetChangeAmount, boolean a_doMonitor) throws Exception { // Start with a DefaultConfiguration, which comes setup with the // most common settings. // ------------------------------------------------------------- Configuration conf = new DefaultConfiguration(); // Care that the fittest individual of the current population is // always taken to the next generation. // Consider: With that, the pop. size may exceed its original // size by one sometimes! // ------------------------------------------------------------- conf.setPreservFittestIndividual(true); conf.setKeepPopulationSizeConstant(false); // Set the fitness function we want to use, which is our // MinimizingMakeChangeFitnessFunction. We construct it with // the target amount of change passed in to this method. // --------------------------------------------------------- FitnessFunction myFunc = new SampleFitnessFunction(a_targetChangeAmount); conf.setFitnessFunction(myFunc); if (a_doMonitor) { // Turn on monitoring/auditing of evolution progress. // -------------------------------------------------- m_monitor = new EvolutionMonitor(); conf.setMonitor(m_monitor); } // Now we need to tell the Configuration object how we want our // Chromosomes to be setup. We do that by actually creating a // sample Chromosome and then setting it on the Configuration // object. As mentioned earlier, we want our Chromosomes to each // have four genes, one for each of the coin types. We want the // values (alleles) of those genes to be integers, which represent // how many coins of that type we have. We therefore use the // IntegerGene class to represent each of the genes. That class // also lets us specify a lower and upper bound, which we set // to sensible values for each coin type. // -------------------------------------------------------------- Gene[] sampleGenes = new Gene[4]; sampleGenes[0] = new IntegerGene(conf, 0, 98); // Wasser sampleGenes[1] = new IntegerGene(conf, 0, 98); // Zucker sampleGenes[2] = new IntegerGene(conf, 0, 98); // Saft1 sampleGenes[3] = new IntegerGene(conf, 0, 98); // Saft2 IChromosome sampleChromosome = new Chromosome(conf, sampleGenes); conf.setSampleChromosome(sampleChromosome); // Finally, we need to tell the Configuration object how many // Chromosomes we want in our population. The more Chromosomes, // the larger number of potential solutions (which is good for // finding the answer), but the longer it will take to evolve // the population (which could be seen as bad). // ------------------------------------------------------------ conf.setPopulationSize(80); // Now we initialize the population randomly, anyway (as an example only)! // If you want to load previous results from file, remove the next line! // ----------------------------------------------------------------------- Genotype population = Genotype.randomInitialGenotype(conf); // Evolve the population. Since we don't know what the best answer // is going to be, we just evolve the max number of times. // --------------------------------------------------------------- long startTime = System.currentTimeMillis(); for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) { if (!uniqueChromosomes(population.getPopulation())) { throw new RuntimeException("Invalid state in generation " + i); } if (m_monitor != null) { population.evolve(m_monitor); } else { population.evolve(); } } long endTime = System.currentTimeMillis(); System.out.println("Total evolution time: " + (endTime - startTime) + " ms"); // Save progress to file. A new run of this example will then be able to // resume where it stopped before! --> this is completely optional. // --------------------------------------------------------------------- // Display the best solution we found. // ----------------------------------- IChromosome bestSolutionSoFar = population.getFittestChromosome(); double v1 = bestSolutionSoFar.getFitnessValue(); System.out.println( "The best solution has a fitness value of " + bestSolutionSoFar.getFitnessValue()); bestSolutionSoFar.setFitnessValueDirectly(-1); System.out.println("It contains the following: "); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 0) + " ml water."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 1) + " ml sugar."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 2) + " ml juice 1."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 3) + " ml juice 2."); System.out.println( "For a total of " + SampleFitnessFunction.amountOfChange(bestSolutionSoFar) + " ml."); }
/** * Evolves the population of chromosomes within a genotype. This will execute all of the genetic * operators added to the present active configuration and then invoke the natural selector to * choose which chromosomes will be included in the next generation population. * * @param a_pop the population to evolve * @param a_conf the configuration to use for evolution * @return evolved population * @author Klaus Meffert * @since 3.2 */ public Population evolve(Population a_pop, Configuration a_conf) { Population pop = a_pop; int originalPopSize = a_conf.getPopulationSize(); boolean monitorActive = a_conf.getMonitor() != null; IChromosome fittest = null; // If first generation: Set age to one to allow genetic operations, // see CrossoverOperator for an illustration. // ---------------------------------------------------------------- if (a_conf.getGenerationNr() == 0) { int size = pop.size(); for (int i = 0; i < size; i++) { IChromosome chrom = pop.getChromosome(i); chrom.increaseAge(); } } else { // Select fittest chromosome in case it should be preserved and we are // not in the very first generation. // ------------------------------------------------------------------- if (a_conf.isPreserveFittestIndividual()) { /** @todo utilize jobs. In pop do also utilize jobs, especially for fitness computation */ fittest = pop.determineFittestChromosome(0, pop.size() - 1); } } if (a_conf.getGenerationNr() > 0) { // Adjust population size to configured size (if wanted). // Theoretically, this should be done at the end of this method. // But for optimization issues it is not. If it is the last call to // evolve() then the resulting population possibly contains more // chromosomes than the wanted number. But this is no bad thing as // more alternatives mean better chances having a fit candidate. // If it is not the last call to evolve() then the next call will // ensure the correct population size by calling keepPopSizeConstant. // ------------------------------------------------------------------ keepPopSizeConstant(pop, a_conf); } // Ensure fitness value of all chromosomes is udpated. // --------------------------------------------------- if (monitorActive) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_BEFORE_UPDATE_CHROMOSOMES1, a_conf.getGenerationNr(), new Object[] {pop}); } updateChromosomes(pop, a_conf); if (monitorActive) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_AFTER_UPDATE_CHROMOSOMES1, a_conf.getGenerationNr(), new Object[] {pop}); } // Apply certain NaturalSelectors before GeneticOperators will be executed. // ------------------------------------------------------------------------ pop = applyNaturalSelectors(a_conf, pop, true); // Execute all of the Genetic Operators. // ------------------------------------- applyGeneticOperators(a_conf, pop); // Reset fitness value of genetically operated chromosomes. // Normally, this should not be necessary as the Chromosome class // initializes each newly created chromosome with // FitnessFunction.NO_FITNESS_VALUE. But who knows which Chromosome // implementation is used... // ---------------------------------------------------------------- int currentPopSize = pop.size(); for (int i = originalPopSize; i < currentPopSize; i++) { IChromosome chrom = pop.getChromosome(i); chrom.setFitnessValueDirectly(FitnessFunction.NO_FITNESS_VALUE); // Mark chromosome as new-born. // ---------------------------- chrom.resetAge(); // Mark chromosome as being operated on. // ------------------------------------- chrom.increaseOperatedOn(); } // Increase age of all chromosomes which are not modified by genetic // operations. // ----------------------------------------------------------------- int size = Math.min(originalPopSize, currentPopSize); for (int i = 0; i < size; i++) { IChromosome chrom = pop.getChromosome(i); chrom.increaseAge(); // Mark chromosome as not being operated on. // ----------------------------------------- chrom.resetOperatedOn(); } // If a bulk fitness function has been provided, call it. // ------------------------------------------------------ BulkFitnessFunction bulkFunction = a_conf.getBulkFitnessFunction(); if (bulkFunction != null) { if (monitorActive) { // Monitor that bulk fitness will be called for evaluation. // -------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_BEFORE_BULK_EVAL, a_conf.getGenerationNr(), new Object[] {bulkFunction, pop}); } /** @todo utilize jobs: bulk fitness function is not so important for a prototype! */ bulkFunction.evaluate(pop); if (monitorActive) { // Monitor that bulk fitness has been called for evaluation. // --------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_AFTER_BULK_EVAL, a_conf.getGenerationNr(), new Object[] {bulkFunction, pop}); } } // Ensure fitness value of all chromosomes is udpated. // --------------------------------------------------- if (monitorActive) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_BEFORE_UPDATE_CHROMOSOMES2, a_conf.getGenerationNr(), new Object[] {pop}); } updateChromosomes(pop, a_conf); if (monitorActive) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_AFTER_UPDATE_CHROMOSOMES2, a_conf.getGenerationNr(), new Object[] {pop}); } // Apply certain NaturalSelectors after GeneticOperators have been applied. // ------------------------------------------------------------------------ pop = applyNaturalSelectors(a_conf, pop, false); // Fill up population randomly if size dropped below specified percentage // of original size. // ---------------------------------------------------------------------- if (a_conf.getMinimumPopSizePercent() > 0) { int sizeWanted = a_conf.getPopulationSize(); int popSize; int minSize = (int) Math.round(sizeWanted * (double) a_conf.getMinimumPopSizePercent() / 100); popSize = pop.size(); if (popSize < minSize) { IChromosome newChrom; IChromosome sampleChrom = a_conf.getSampleChromosome(); Class sampleChromClass = sampleChrom.getClass(); IInitializer chromIniter = a_conf.getJGAPFactory().getInitializerFor(sampleChrom, sampleChromClass); while (pop.size() < minSize) { try { /** * @todo utilize jobs as initialization may be time-consuming as invalid combinations * may have to be filtered out */ newChrom = (IChromosome) chromIniter.perform(sampleChrom, sampleChromClass, null); if (monitorActive) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_BEFORE_ADD_CHROMOSOME, a_conf.getGenerationNr(), new Object[] {pop, newChrom}); } pop.addChromosome(newChrom); } catch (Exception ex) { throw new RuntimeException(ex); } } } } IChromosome newFittest = reAddFittest(pop, fittest); if (monitorActive && newFittest != null) { // Monitor that fitness value of chromosomes is being updated. // ----------------------------------------------------------- a_conf .getMonitor() .event( IEvolutionMonitor.MONITOR_EVENT_READD_FITTEST, a_conf.getGenerationNr(), new Object[] {pop, fittest}); } // Increase number of generations. // ------------------------------- a_conf.incrementGenerationNr(); // Fire an event to indicate we've performed an evolution. // ------------------------------------------------------- m_lastPop = pop; m_lastConf = a_conf; a_conf .getEventManager() .fireGeneticEvent(new GeneticEvent(GeneticEvent.GENOTYPE_EVOLVED_EVENT, this)); return pop; }