@Override public void visitJetFile(@NotNull JetFile file) { MutablePackageFragmentDescriptor packageFragment = getOrCreatePackageFragmentForFile(file); c.getPackageFragments().put(file, packageFragment); c.addFile(file); PackageViewDescriptor packageView = packageFragment.getContainingDeclaration().getPackage(packageFragment.getFqName()); ChainedScope rootPlusPackageScope = new ChainedScope( packageView, "Root scope for " + file, packageView.getMemberScope(), outerScope); WriteThroughScope packageScope = new WriteThroughScope( rootPlusPackageScope, packageFragment.getMemberScope(), new TraceBasedRedeclarationHandler(trace), "package in file " + file.getName()); packageScope.changeLockLevel(WritableScope.LockLevel.BOTH); c.getFileScopes().put(file, packageScope); if (file.isScript()) { scriptHeaderResolver.processScriptHierarchy(c, file.getScript(), packageScope); } prepareForDeferredCall(packageScope, packageFragment, file); }
@NotNull private MutableClassDescriptor createClassDescriptorForClass( @NotNull JetClass klass, @NotNull DeclarationDescriptor containingDeclaration) { ClassKind kind = getClassKind(klass); // Kind check is needed in order to not consider enums as inner in any case // (otherwise it would be impossible to create a class object in the enum) boolean isInner = kind == ClassKind.CLASS && klass.isInner(); MutableClassDescriptor mutableClassDescriptor = new MutableClassDescriptor( containingDeclaration, outerScope, kind, isInner, JetPsiUtil.safeName(klass.getName())); c.getClasses().put(klass, mutableClassDescriptor); trace.record( FQNAME_TO_CLASS_DESCRIPTOR, JetPsiUtil.getUnsafeFQName(klass), mutableClassDescriptor); createClassObjectForEnumClass(mutableClassDescriptor); JetScope classScope = mutableClassDescriptor.getScopeForMemberDeclarationResolution(); prepareForDeferredCall(classScope, mutableClassDescriptor, klass); return mutableClassDescriptor; }
@Override public void visitClassObject(@NotNull JetClassObject classObject) { JetObjectDeclaration objectDeclaration = classObject.getObjectDeclaration(); DeclarationDescriptor container = owner.getOwnerForChildren(); MutableClassDescriptor classObjectDescriptor = createClassDescriptorForSingleton( objectDeclaration, getClassObjectName(container.getName()), ClassKind.CLASS_OBJECT); PackageLikeBuilder.ClassObjectStatus status = isEnumEntry(container) || isObject(container) || c.getTopDownAnalysisParameters().isDeclaredLocally() ? PackageLikeBuilder.ClassObjectStatus.NOT_ALLOWED : owner.setClassObjectDescriptor(classObjectDescriptor); switch (status) { case DUPLICATE: trace.report(MANY_CLASS_OBJECTS.on(classObject)); break; case NOT_ALLOWED: trace.report(CLASS_OBJECT_NOT_ALLOWED.on(classObject)); break; case OK: // Everything is OK so no errors to trace. break; } }
private void detectAndDisconnectLoops(@NotNull TopDownAnalysisContext c) { // Loop detection and disconnection List<Runnable> tasks = new ArrayList<Runnable>(); for (final MutableClassDescriptorLite klass : c.getClassesTopologicalOrder()) { for (final JetType supertype : klass.getSupertypes()) { ClassifierDescriptor supertypeDescriptor = supertype.getConstructor().getDeclarationDescriptor(); if (supertypeDescriptor instanceof MutableClassDescriptorLite) { MutableClassDescriptorLite superclass = (MutableClassDescriptorLite) supertypeDescriptor; if (isReachable(superclass, klass, new HashSet<ClassDescriptor>())) { tasks.add( new Runnable() { @Override public void run() { klass.getSupertypes().remove(supertype); } }); reportCyclicInheritanceHierarchyError(trace, klass, superclass); } } } } for (Runnable task : tasks) { task.run(); } }
private List<MutableClassDescriptorLite> topologicallySortClassesAndObjects( @NotNull TopDownAnalysisContext c) { // A topsort is needed only for better diagnostics: // edges that get removed to disconnect loops are more reasonable in this case //noinspection unchecked return DFS.topologicalOrder( (Iterable) c.getClasses().values(), new DFS.Neighbors<MutableClassDescriptorLite>() { @NotNull @Override public Iterable<MutableClassDescriptorLite> getNeighbors( MutableClassDescriptorLite current) { List<MutableClassDescriptorLite> result = Lists.newArrayList(); for (JetType supertype : current.getSupertypes()) { DeclarationDescriptor declarationDescriptor = supertype.getConstructor().getDeclarationDescriptor(); if (declarationDescriptor instanceof MutableClassDescriptorLite) { MutableClassDescriptorLite classDescriptor = (MutableClassDescriptorLite) declarationDescriptor; result.add(classDescriptor); } } return result; } }); }
public void process( @NotNull TopDownAnalysisContext c, @NotNull JetScope outerScope, @NotNull PackageLikeBuilder owner, @NotNull Collection<? extends PsiElement> declarations) { { // TODO: Very temp code - main goal is to remove recursion from // collectPackageFragmentsAndClassifiers Queue<JetDeclarationContainer> forDeferredResolve = new LinkedList<JetDeclarationContainer>(); forDeferredResolve.addAll( collectPackageFragmentsAndClassifiers(c, outerScope, owner, declarations)); while (!forDeferredResolve.isEmpty()) { JetDeclarationContainer declarationContainer = forDeferredResolve.poll(); assert declarationContainer != null; DeclarationDescriptor descriptorForDeferredResolve = c.forDeferredResolver.get(declarationContainer); JetScope scope = c.normalScope.get(declarationContainer); // Even more temp code if (descriptorForDeferredResolve instanceof MutableClassDescriptorLite) { forDeferredResolve.addAll( collectPackageFragmentsAndClassifiers( c, scope, ((MutableClassDescriptorLite) descriptorForDeferredResolve).getBuilder(), declarationContainer.getDeclarations())); } else if (descriptorForDeferredResolve instanceof MutablePackageFragmentDescriptor) { forDeferredResolve.addAll( collectPackageFragmentsAndClassifiers( c, scope, ((MutablePackageFragmentDescriptor) descriptorForDeferredResolve).getBuilder(), declarationContainer.getDeclarations())); } else { assert false; } } } importsResolver.processTypeImports(c); createTypeConstructors( c); // create type constructors for classes and generic parameters, supertypes are not // filled in resolveTypesInClassHeaders( c); // Generic bounds and types in supertype lists (no expressions or constructor // resolution) c.setClassesTopologicalOrder(topologicallySortClassesAndObjects(c)); // Detect and disconnect all loops in the hierarchy detectAndDisconnectLoops(c); }
private void resolveTypesInClassHeaders(@NotNull TopDownAnalysisContext c) { for (Map.Entry<JetClassOrObject, ClassDescriptorWithResolutionScopes> entry : c.getClasses().entrySet()) { JetClassOrObject classOrObject = entry.getKey(); if (classOrObject instanceof JetClass) { ClassDescriptorWithResolutionScopes descriptor = entry.getValue(); //noinspection unchecked descriptorResolver.resolveGenericBounds( (JetClass) classOrObject, descriptor, descriptor.getScopeForClassHeaderResolution(), (List) descriptor.getTypeConstructor().getParameters(), trace); } } for (Map.Entry<JetClassOrObject, ClassDescriptorWithResolutionScopes> entry : c.getClasses().entrySet()) { descriptorResolver.resolveSupertypesForMutableClassDescriptor( entry.getKey(), (MutableClassDescriptor) entry.getValue(), trace); } }
@NotNull private MutableClassDescriptor createClassDescriptorForSingleton( @NotNull JetClassOrObject declaration, @NotNull Name name, @NotNull ClassKind kind) { MutableClassDescriptor descriptor = new MutableClassDescriptor(owner.getOwnerForChildren(), outerScope, kind, false, name); prepareForDeferredCall( descriptor.getScopeForMemberDeclarationResolution(), descriptor, declaration); createPrimaryConstructorForObject(declaration, descriptor); trace.record(BindingContext.CLASS, declaration, descriptor); c.getClasses().put(declaration, descriptor); return descriptor; }
private void createTypeConstructors(@NotNull TopDownAnalysisContext c) { for (Map.Entry<JetClassOrObject, ClassDescriptorWithResolutionScopes> entry : c.getClasses().entrySet()) { JetClassOrObject classOrObject = entry.getKey(); MutableClassDescriptor descriptor = (MutableClassDescriptor) entry.getValue(); if (classOrObject instanceof JetClass) { descriptorResolver.resolveMutableClassDescriptor( (JetClass) classOrObject, descriptor, trace); } else if (classOrObject instanceof JetObjectDeclaration) { descriptor.setModality(Modality.FINAL); descriptor.setVisibility( resolveVisibilityFromModifiers(classOrObject, getDefaultClassVisibility(descriptor))); descriptor.setTypeParameterDescriptors(Collections.<TypeParameterDescriptor>emptyList()); } descriptor.createTypeConstructor(); ClassKind kind = descriptor.getKind(); if (kind == ClassKind.ENUM_ENTRY || kind == ClassKind.OBJECT || kind == ClassKind.ENUM_CLASS) { MutableClassDescriptorLite classObject = descriptor.getClassObjectDescriptor(); assert classObject != null : "Enum entries and named objects should have class objects: " + classOrObject.getText(); JetType supertype; if (kind == ClassKind.ENUM_CLASS) { supertype = KotlinBuiltIns.getInstance().getAnyType(); } else { // This is a clever hack: each enum entry and object declaration (i.e. singleton) has a // synthetic class object. // We make this class object inherit from the singleton here, thus allowing to use the // singleton's class object where // the instance of the singleton is applicable. Effectively all members of the singleton // would be present in its class // object as fake overrides, so you can access them via standard class object notation: // ObjectName.memberName() supertype = descriptor.getDefaultType(); } classObject.setSupertypes(Collections.singleton(supertype)); classObject.createTypeConstructor(); } } }