public static DoubleMatrix conv2d(DoubleMatrix input, DoubleMatrix kernel, Type type) { DoubleMatrix xShape = new DoubleMatrix(1, 2); xShape.put(0, input.rows); xShape.put(1, input.columns); DoubleMatrix yShape = new DoubleMatrix(1, 2); yShape.put(0, kernel.rows); yShape.put(1, kernel.columns); DoubleMatrix zShape = xShape.addi(yShape).subi(1); int retRows = (int) zShape.get(0); int retCols = (int) zShape.get(1); ComplexDoubleMatrix fftInput = complexDisceteFourierTransform(input, retRows, retCols); ComplexDoubleMatrix fftKernel = complexDisceteFourierTransform(kernel, retRows, retCols); ComplexDoubleMatrix mul = fftKernel.muli(fftInput); ComplexDoubleMatrix retComplex = complexInverseDisceteFourierTransform(mul); DoubleMatrix ret = retComplex.getReal(); if (type == Type.VALID) { DoubleMatrix validShape = xShape.subi(yShape).addi(1); DoubleMatrix start = zShape.subi(validShape).divi(2); DoubleMatrix end = start.addi(validShape); if (start.get(0) < 1 || start.get(1) < 1) throw new IllegalStateException("Illegal row index " + start); if (end.get(0) < 1 || end.get(1) < 1) throw new IllegalStateException("Illegal column index " + end); ret = ret.get( RangeUtils.interval((int) start.get(0), (int) end.get(0)), RangeUtils.interval((int) start.get(1), (int) end.get(1))); } return ret; }
private void costantiniUnwrap() throws LPException { final int ny = wrappedPhase.rows - 1; // start from Zero! final int nx = wrappedPhase.columns - 1; // start from Zero! if (wrappedPhase.isVector()) throw new IllegalArgumentException("Input must be 2D array"); if (wrappedPhase.rows < 2 || wrappedPhase.columns < 2) throw new IllegalArgumentException("Size of input must be larger than 2"); // Default weight DoubleMatrix w1 = DoubleMatrix.ones(ny + 1, 1); w1.put(0, 0.5); w1.put(w1.length - 1, 0.5); DoubleMatrix w2 = DoubleMatrix.ones(1, nx + 1); w2.put(0, 0.5); w2.put(w2.length - 1, 0.5); DoubleMatrix weight = w1.mmul(w2); DoubleMatrix i, j, I_J, IP1_J, I_JP1; DoubleMatrix Psi1, Psi2; DoubleMatrix[] ROWS; // Compute partial derivative Psi1, eqt (1,3) i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); IP1_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0].add(1), ROWS[1]); Psi1 = JblasUtils.getMatrixFromIdx(wrappedPhase, IP1_J) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi1 = UnwrapUtils.wrapDoubleMatrix(Psi1); // Compute partial derivative Psi2, eqt (2,4) i = intRangeDoubleMatrix(0, ny); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1].add(1)); Psi2 = JblasUtils.getMatrixFromIdx(wrappedPhase, I_JP1) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi2 = UnwrapUtils.wrapDoubleMatrix(Psi2); // Compute beq DoubleMatrix beq = DoubleMatrix.zeros(ny, nx); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1].add(1)); beq.addi(JblasUtils.getMatrixFromIdx(Psi1, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi1, I_J))); I_J = JblasUtils.sub2ind(Psi2.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi2.rows, ROWS[0].add(1), ROWS[1]); beq.subi(JblasUtils.getMatrixFromIdx(Psi2, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi2, I_J))); beq.muli(-1 / (2 * Constants._PI)); for (int k = 0; k < beq.length; k++) { beq.put(k, Math.round(beq.get(k))); } beq.reshape(beq.length, 1); logger.debug("Constraint matrix"); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); DoubleMatrix ROW_I_J = JblasUtils.sub2ind(i.length, ROWS[0], ROWS[1]); int nS0 = nx * ny; // Use by S1p, S1m DoubleMatrix[] COLS; COLS = grid2D(i, j); DoubleMatrix COL_IJ_1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); COLS = grid2D(i, j.add(1)); DoubleMatrix COL_I_JP1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); int nS1 = (nx + 1) * (ny); // SOAPBinding.Use by S2p, S2m COLS = grid2D(i, j); DoubleMatrix COL_IJ_2 = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); COLS = grid2D(i.add(1), j); DoubleMatrix COL_IP1_J = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); int nS2 = nx * (ny + 1); // Equality constraint matrix (Aeq) /* S1p = + sparse(ROW_I_J, COL_I_JP1,1,nS0,nS1) ... - sparse(ROW_I_J, COL_IJ_1,1,nS0,nS1); S1m = -S1p; S2p = - sparse(ROW_I_J, COL_IP1_J,1,nS0,nS2) ... + sparse(ROW_I_J, COL_IJ_2,1,nS0,nS2); S2m = -S2p; */ // ToDo: Aeq matrix should be sparse from it's initialization, look into JblasMatrix factory for // howto // ...otherwise even a data set of eg 40x40 pixels will exhaust heap: // ... dimension of Aeq (equality constraints) matrix for 30x30 input is 1521x6240 matrix // ... dimension of Aeq ( ) matrix for 50x50 input is 2401x9800 // ... dimension of Aeq ( ) matrix for 512x512 input is 261121x1046528 DoubleMatrix S1p = JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_I_JP1) .sub(JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_IJ_1)); DoubleMatrix S1m = S1p.neg(); DoubleMatrix S2p = JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IP1_J) .neg() .add(JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IJ_2)); DoubleMatrix S2m = S2p.neg(); DoubleMatrix Aeq = concatHorizontally(concatHorizontally(S1p, S1m), concatHorizontally(S2p, S2m)); final int nObs = Aeq.columns; final int nUnkn = Aeq.rows; DoubleMatrix c1 = JblasUtils.getMatrixFromRange(0, ny, 0, weight.columns, weight); DoubleMatrix c2 = JblasUtils.getMatrixFromRange(0, weight.rows, 0, nx, weight); c1.reshape(c1.length, 1); c2.reshape(c2.length, 1); DoubleMatrix cost = DoubleMatrix.concatVertically( DoubleMatrix.concatVertically(c1, c1), DoubleMatrix.concatVertically(c2, c2)); logger.debug("Minimum network flow resolution"); StopWatch clockLP = new StopWatch(); LinearProgram lp = new LinearProgram(cost.data); lp.setMinProblem(true); boolean[] integerBool = new boolean[nObs]; double[] lowerBound = new double[nObs]; double[] upperBound = new double[nObs]; for (int k = 0; k < nUnkn; k++) { lp.addConstraint(new LinearEqualsConstraint(Aeq.getRow(k).toArray(), beq.get(k), "cost")); } for (int k = 0; k < nObs; k++) { integerBool[k] = true; lowerBound[k] = 0; upperBound[k] = 99999; } // setup bounds and integer nature lp.setIsinteger(integerBool); lp.setUpperbound(upperBound); lp.setLowerbound(lowerBound); LinearProgramSolver solver = SolverFactory.newDefault(); // double[] solution; // solution = solver.solve(lp); DoubleMatrix solution = new DoubleMatrix(solver.solve(lp)); clockLP.stop(); logger.debug("Total GLPK time: {} [sec]", (double) (clockLP.getElapsedTime()) / 1000); // Displatch the LP solution int offset; int[] idx1p = JblasUtils.intRangeIntArray(0, nS1 - 1); DoubleMatrix x1p = solution.get(idx1p); x1p.reshape(ny, nx + 1); offset = idx1p[nS1 - 1] + 1; int[] idx1m = JblasUtils.intRangeIntArray(offset, offset + nS1 - 1); DoubleMatrix x1m = solution.get(idx1m); x1m.reshape(ny, nx + 1); offset = idx1m[idx1m.length - 1] + 1; int[] idx2p = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2p = solution.get(idx2p); x2p.reshape(ny + 1, nx); offset = idx2p[idx2p.length - 1] + 1; int[] idx2m = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2m = solution.get(idx2m); x2m.reshape(ny + 1, nx); // Compute the derivative jumps, eqt (20,21) DoubleMatrix k1 = x1p.sub(x1m); DoubleMatrix k2 = x2p.sub(x2m); // (?) Round to integer solution if (roundK == true) { for (int idx = 0; idx < k1.length; idx++) { k1.put(idx, FastMath.floor(k1.get(idx))); } for (int idx = 0; idx < k2.length; idx++) { k2.put(idx, FastMath.floor(k2.get(idx))); } } // Sum the jumps with the wrapped partial derivatives, eqt (10,11) k1.reshape(ny, nx + 1); k2.reshape(ny + 1, nx); k1.addi(Psi1.div(Constants._TWO_PI)); k2.addi(Psi2.div(Constants._TWO_PI)); // Integrate the partial derivatives, eqt (6) // cumsum() method in JblasTester -> see cumsum_demo() in JblasTester.cumsum_demo() DoubleMatrix k2_temp = DoubleMatrix.concatHorizontally(DoubleMatrix.zeros(1), k2.getRow(0)); k2_temp = JblasUtils.cumsum(k2_temp, 1); DoubleMatrix k = DoubleMatrix.concatVertically(k2_temp, k1); k = JblasUtils.cumsum(k, 1); // Unwrap - final solution unwrappedPhase = k.mul(Constants._TWO_PI); }
/** * Update the gradient according to the configuration such as adagrad, momentum, and sparsity * * @param gradient the gradient to modify * @param iteration the current iteration * @param learningRate the learning rate for the current iteration */ protected void updateGradientAccordingToParams( NeuralNetworkGradient gradient, int iteration, double learningRate) { DoubleMatrix wGradient = gradient.getwGradient(); DoubleMatrix hBiasGradient = gradient.gethBiasGradient(); DoubleMatrix vBiasGradient = gradient.getvBiasGradient(); // reset adagrad history if (iteration != 0 && resetAdaGradIterations > 0 && iteration % resetAdaGradIterations == 0) { wAdaGrad.historicalGradient = null; hBiasAdaGrad.historicalGradient = null; vBiasAdaGrad.historicalGradient = null; if (this.W != null && this.wAdaGrad == null) this.wAdaGrad = new AdaGrad(this.W.rows, this.W.columns); if (this.vBias != null && this.vBiasAdaGrad == null) this.vBiasAdaGrad = new AdaGrad(this.vBias.rows, this.vBias.columns); if (this.hBias != null && this.hBiasAdaGrad == null) this.hBiasAdaGrad = new AdaGrad(this.hBias.rows, this.hBias.columns); log.info("Resetting adagrad"); } DoubleMatrix wLearningRates = wAdaGrad.getLearningRates(wGradient); // change up momentum after so many iterations if specified double momentum = this.momentum; if (momentumAfter != null && !momentumAfter.isEmpty()) { int key = momentumAfter.keySet().iterator().next(); if (iteration >= key) { momentum = momentumAfter.get(key); } } if (useAdaGrad) wGradient.muli(wLearningRates); else wGradient.muli(learningRate); if (useAdaGrad) hBiasGradient = hBiasGradient.mul(hBiasAdaGrad.getLearningRates(hBiasGradient)); else hBiasGradient = hBiasGradient.mul(learningRate); if (useAdaGrad) vBiasGradient = vBiasGradient.mul(vBiasAdaGrad.getLearningRates(vBiasGradient)); else vBiasGradient = vBiasGradient.mul(learningRate); // only do this with binary hidden layers if (applySparsity && this.hBiasGradient != null) applySparsity(hBiasGradient, learningRate); if (momentum != 0 && this.wGradient != null) wGradient.addi(this.wGradient.mul(momentum).add(wGradient.mul(1 - momentum))); if (momentum != 0 && this.vBiasGradient != null) vBiasGradient.addi(this.vBiasGradient.mul(momentum).add(vBiasGradient.mul(1 - momentum))); if (momentum != 0 && this.hBiasGradient != null) hBiasGradient.addi(this.hBiasGradient.mul(momentum).add(hBiasGradient.mul(1 - momentum))); if (normalizeByInputRows) { wGradient.divi(lastMiniBatchSize); vBiasGradient.divi(lastMiniBatchSize); hBiasGradient.divi(lastMiniBatchSize); } // simulate post gradient application and apply the difference to the gradient to decrease the // change the gradient has if (useRegularization && l2 > 0) { if (useAdaGrad) wGradient.subi(W.mul(l2).mul(wLearningRates)); else wGradient.subi(W.mul(l2 * learningRate)); } if (constrainGradientToUnitNorm) { wGradient.divi(wGradient.norm2()); vBiasGradient.divi(vBiasGradient.norm2()); hBiasGradient.divi(hBiasGradient.norm2()); } this.wGradient = wGradient; this.vBiasGradient = vBiasGradient; this.hBiasGradient = hBiasGradient; }