/** * Sorts the specified range of elements according to the order induced by the specified * comparator. All elements in the range must be <i>mutually comparable</i> by the specified * comparator (that is, <tt>c.compare(a, b)</tt> must not throw an exception for any indexes * <tt>a</tt> and <tt>b</tt> in the range). * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a * result of the sort. * * <p>The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest * element in the low sublist is less than the lowest element in the high sublist). This algorithm * offers guaranteed n*log(n) performance, and can approach linear performance on nearly sorted * lists. * * @param fromIndex the index of the first element (inclusive) to be sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @param c the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two indexes (a,b). * @see IntComparator * @see Swapper */ public static void mergeSort(int fromIndex, int toIndex, IntComparator c, Swapper swapper) { /* We retain the same method signature as quickSort. Given only a comparator and swapper we do not know how to copy and move elements from/to temporary arrays. Hence, in contrast to the JDK mergesorts this is an "in-place" mergesort, i.e. does not allocate any temporary arrays. A non-inplace mergesort would perhaps be faster in most cases, but would require non-intuitive delegate objects... */ int length = toIndex - fromIndex; // Insertion sort on smallest arrays if (length < SMALL) { for (int i = fromIndex; i < toIndex; i++) { for (int j = i; j > fromIndex && (c.compare(j - 1, j) > 0); j--) { swapper.swap(j, j - 1); } } return; } // Recursively sort halves int mid = (fromIndex + toIndex) / 2; mergeSort(fromIndex, mid, c, swapper); mergeSort(mid, toIndex, c, swapper); // If list is already sorted, nothing left to do. This is an // optimization that results in faster sorts for nearly ordered lists. if (c.compare(mid - 1, mid) <= 0) return; // Merge sorted halves inplace_merge(fromIndex, mid, toIndex, c, swapper); }
/** * Performs a binary search on an already-sorted range: finds the last position where an element * can be inserted without violating the ordering. Sorting is by a user-supplied comparison * function. * * @param array Array containing the range. * @param first Beginning of the range. * @param last One past the end of the range. * @param x Element to be searched for. * @param comp Comparison function. * @return The largest index i such that, for every j in the range <code>[first, i)</code>, <code> * comp.apply(x, array[j])</code> is <code>false</code>. * @see Sorting#lower_bound * @see Sorting#equal_range * @see Sorting#binary_search */ private static int upper_bound(int first, int last, int x, IntComparator comp) { // if (comp==null) throw new NullPointerException(); int len = last - first; while (len > 0) { int half = len / 2; int middle = first + half; if (comp.compare(x, middle) < 0) { len = half; } else { first = middle + 1; len -= half + 1; } } return first; }
/** * Transforms two consecutive sorted ranges into a single sorted range. The initial ranges are * <code>[first, middle)</code> and <code>[middle, last)</code>, and the resulting range is <code> * [first, last)</code>. Elements in the first input range will precede equal elements in the * second. */ private static void inplace_merge( int first, int middle, int last, IntComparator comp, Swapper swapper) { if (first >= middle || middle >= last) return; if (last - first == 2) { if (comp.compare(middle, first) < 0) { swapper.swap(first, middle); } return; } int firstCut; int secondCut; if (middle - first > last - middle) { firstCut = first + (middle - first) / 2; secondCut = lower_bound(middle, last, firstCut, comp); } else { secondCut = middle + (last - middle) / 2; firstCut = upper_bound(first, middle, secondCut, comp); } // rotate(firstCut, middle, secondCut, swapper); // is manually inlined for speed (jitter inlining seems to work only for small call depths, even // if methods are "static private") // speedup = 1.7 // begin inline int first2 = firstCut; int middle2 = middle; int last2 = secondCut; if (middle2 != first2 && middle2 != last2) { int first1 = first2; int last1 = middle2; while (first1 < --last1) swapper.swap(first1++, last1); first1 = middle2; last1 = last2; while (first1 < --last1) swapper.swap(first1++, last1); first1 = first2; last1 = last2; while (first1 < --last1) swapper.swap(first1++, last1); } // end inline middle = firstCut + (secondCut - middle); inplace_merge(first, firstCut, middle, comp, swapper); inplace_merge(middle, secondCut, last, comp, swapper); }
/** Sorts the specified sub-array into ascending order. */ private static void quickSort1(int off, int len, IntComparator comp, Swapper swapper) { // Insertion sort on smallest arrays if (len < SMALL) { for (int i = off; i < len + off; i++) for (int j = i; j > off && (comp.compare(j - 1, j) > 0); j--) { swapper.swap(j, j - 1); } return; } // Choose a partition element, v int m = off + len / 2; // Small arrays, middle element if (len > SMALL) { int l = off; int n = off + len - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(l, l + s, l + 2 * s, comp); m = med3(m - s, m, m + s, comp); n = med3(n - 2 * s, n - s, n, comp); } m = med3(l, m, n, comp); // Mid-size, med of 3 } // long v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while (true) { int comparison; while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) { if (comparison == 0) { if (a == m) m = b; // moving target; DELTA to JDK !!! else if (b == m) m = a; // moving target; DELTA to JDK !!! swapper.swap(a++, b); } b++; } while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) { if (comparison == 0) { if (c == m) m = d; // moving target; DELTA to JDK !!! else if (d == m) m = c; // moving target; DELTA to JDK !!! swapper.swap(c, d--); } c--; } if (b > c) break; if (b == m) m = d; // moving target; DELTA to JDK !!! else if (c == m) m = c; // moving target; DELTA to JDK !!! swapper.swap(b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a - off, b - a); vecswap(swapper, off, b - s, s); s = Math.min(d - c, n - d - 1); vecswap(swapper, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort1(off, s, comp, swapper); if ((s = d - c) > 1) quickSort1(n - s, s, comp, swapper); }
/** Returns the index of the median of the three indexed chars. */ private static int med3(int a, int b, int c, IntComparator comp) { int ab = comp.compare(a, b); int ac = comp.compare(a, c); int bc = comp.compare(b, c); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); }