/** * @param mapping Mappings. * @param key Key to map. * @param topVer Topology version. * @return Near lock mapping. * @throws GridException If mapping for key failed. */ private GridNearLockMapping<K, V> map( K key, @Nullable GridNearLockMapping<K, V> mapping, long topVer) throws GridException { assert mapping == null || mapping.node() != null; GridNode primary = cctx.affinity().primary(key, topVer); if (cctx.discovery().node(primary.id()) == null) // If primary node left the grid before lock acquisition, fail the whole future. throw newTopologyException(null, primary.id()); if (inTx() && tx.groupLock() && !primary.isLocal()) throw new GridException( "Failed to start group lock transaction (local node is not primary for " + " key) [key=" + key + ", primaryNodeId=" + primary.id() + ']'); if (mapping == null || !primary.id().equals(mapping.node().id())) mapping = new GridNearLockMapping<>(primary, key); else mapping.addKey(key); return mapping; }
/** * Gets next near lock mapping and either acquires dht locks locally or sends near lock request to * remote primary node. * * @param mappings Queue of mappings. * @throws GridException If mapping can not be completed. */ private void proceedMapping(final ConcurrentLinkedDeque8<GridNearLockMapping<K, V>> mappings) throws GridException { GridNearLockMapping<K, V> map = mappings.poll(); // If there are no more mappings to process, complete the future. if (map == null) return; final GridNearLockRequest<K, V> req = map.request(); final Collection<K> mappedKeys = map.distributedKeys(); final GridNode node = map.node(); if (filter != null && filter.length != 0) req.filter(filter, cctx); if (node.isLocal()) { req.miniId(GridUuid.randomUuid()); if (log.isDebugEnabled()) log.debug("Before locally locking near request: " + req); GridFuture<GridNearLockResponse<K, V>> fut; if (CU.DHT_ENABLED) fut = dht().lockAllAsync(cctx.localNode(), req, filter); else { // Create dummy values for testing. GridNearLockResponse<K, V> res = new GridNearLockResponse<>(lockVer, futId, null, false, 1, null); res.addValueBytes(null, null, true, lockVer, lockVer, cctx); fut = new GridFinishedFuture<>(ctx, res); } // Add new future. add( new GridEmbeddedFuture<>( cctx.kernalContext(), fut, new C2<GridNearLockResponse<K, V>, Exception, Boolean>() { @Override public Boolean apply(GridNearLockResponse<K, V> res, Exception e) { if (CU.isLockTimeoutOrCancelled(e) || (res != null && CU.isLockTimeoutOrCancelled(res.error()))) return false; if (e != null) { onError(e); return false; } if (res == null) { onError(new GridException("Lock response is null for future: " + this)); return false; } if (res.error() != null) { onError(res.error()); return false; } if (log.isDebugEnabled()) log.debug( "Acquired lock for local DHT mapping [locId=" + cctx.nodeId() + ", mappedKeys=" + mappedKeys + ", fut=" + GridNearLockFuture.this + ']'); try { int i = 0; for (K k : mappedKeys) { while (true) { GridNearCacheEntry<K, V> entry = cctx.near().entryExx(k, req.topologyVersion()); try { GridTuple3<GridCacheVersion, V, byte[]> oldValTup = valMap.get(entry.key()); boolean hasBytes = entry.hasValue(); V oldVal = entry.rawGet(); V newVal = res.value(i); byte[] newBytes = res.valueBytes(i); GridCacheVersion dhtVer = res.dhtVersion(i); GridCacheVersion mappedVer = res.mappedVersion(i); // On local node don't record twice if DHT cache already recorded. boolean record = retval && oldValTup != null && oldValTup.get1().equals(dhtVer); if (newVal == null) { if (oldValTup != null) { if (oldValTup.get1().equals(dhtVer)) { newVal = oldValTup.get2(); newBytes = oldValTup.get3(); } oldVal = oldValTup.get2(); } } // Lock is held at this point, so we can set the // returned value if any. entry.resetFromPrimary(newVal, newBytes, lockVer, dhtVer, node.id()); entry.readyNearLock( lockVer, mappedVer, res.committedVersions(), res.rolledbackVersions(), res.pending()); if (inTx() && implicitTx() && tx.onePhaseCommit()) { boolean pass = res.filterResult(i); tx.entry(k).filters(pass ? CU.<K, V>empty() : CU.<K, V>alwaysFalse()); } if (record) { if (cctx.events().isRecordable(EVT_CACHE_OBJECT_READ)) cctx.events() .addEvent( entry.partition(), entry.key(), tx, null, EVT_CACHE_OBJECT_READ, newVal, newVal != null, oldVal, hasBytes, CU.subjectId(tx, cctx)); cctx.cache().metrics0().onRead(oldVal != null); } if (log.isDebugEnabled()) log.debug( "Processed response for entry [res=" + res + ", entry=" + entry + ']'); break; // Inner while loop. } catch (GridCacheEntryRemovedException ignored) { if (log.isDebugEnabled()) log.debug( "Failed to add candidates because entry was " + "removed (will renew)."); // Replace old entry with new one. entries.set( i, (GridDistributedCacheEntry<K, V>) cctx.cache().entryEx(entry.key())); } } i++; // Increment outside of while loop. } // Proceed and add new future (if any) before completing embedded future. proceedMapping(mappings); } catch (GridException ex) { onError(ex); return false; } return true; } })); } else { final MiniFuture fut = new MiniFuture(node, mappedKeys, mappings); req.miniId(fut.futureId()); add(fut); // Append new future. GridFuture<?> txSync = null; if (inTx()) txSync = cctx.tm().awaitFinishAckAsync(node.id(), tx.threadId()); if (txSync == null || txSync.isDone()) { try { if (log.isDebugEnabled()) log.debug("Sending near lock request [node=" + node.id() + ", req=" + req + ']'); cctx.io().send(node, req); } catch (GridTopologyException ex) { assert fut != null; fut.onResult(ex); } } else { txSync.listenAsync( new CI1<GridFuture<?>>() { @Override public void apply(GridFuture<?> t) { try { if (log.isDebugEnabled()) log.debug( "Sending near lock request [node=" + node.id() + ", req=" + req + ']'); cctx.io().send(node, req); } catch (GridTopologyException ex) { assert fut != null; fut.onResult(ex); } catch (GridException e) { onError(e); } } }); } } }
/** * Maps keys to nodes. Note that we can not simply group keys by nodes and send lock request as * such approach does not preserve order of lock acquisition. Instead, keys are split in * continuous groups belonging to one primary node and locks for these groups are acquired * sequentially. * * @param keys Keys. */ private void map(Iterable<? extends K> keys) { try { GridDiscoveryTopologySnapshot snapshot = topSnapshot.get(); assert snapshot != null; long topVer = snapshot.topologyVersion(); assert topVer > 0; if (CU.affinityNodes(cctx, topVer).isEmpty()) { onDone( new GridTopologyException( "Failed to map keys for near-only cache (all " + "partition nodes left the grid).")); return; } ConcurrentLinkedDeque8<GridNearLockMapping<K, V>> mappings = new ConcurrentLinkedDeque8<>(); // Assign keys to primary nodes. GridNearLockMapping<K, V> map = null; for (K key : keys) { GridNearLockMapping<K, V> updated = map(key, map, topVer); // If new mapping was created, add to collection. if (updated != map) mappings.add(updated); map = updated; } if (isDone()) { if (log.isDebugEnabled()) log.debug("Abandoning (re)map because future is done: " + this); return; } if (log.isDebugEnabled()) log.debug("Starting (re)map for mappings [mappings=" + mappings + ", fut=" + this + ']'); // Create mini futures. for (Iterator<GridNearLockMapping<K, V>> iter = mappings.iterator(); iter.hasNext(); ) { GridNearLockMapping<K, V> mapping = iter.next(); GridNode node = mapping.node(); Collection<K> mappedKeys = mapping.mappedKeys(); assert !mappedKeys.isEmpty(); GridNearLockRequest<K, V> req = null; Collection<K> distributedKeys = new ArrayList<>(mappedKeys.size()); boolean explicit = false; for (K key : mappedKeys) { while (true) { GridNearCacheEntry<K, V> entry = null; try { entry = cctx.near().entryExx(key, topVer); if (!cctx.isAll(entry.wrap(false), filter)) { if (log.isDebugEnabled()) log.debug("Entry being locked did not pass filter (will not lock): " + entry); onComplete(false, false); return; } // Removed exception may be thrown here. GridCacheMvccCandidate<K> cand = addEntry(topVer, entry, node.id()); if (isDone()) { if (log.isDebugEnabled()) log.debug( "Abandoning (re)map because future is done after addEntry attempt " + "[fut=" + this + ", entry=" + entry + ']'); return; } if (cand != null) { if (tx == null && !cand.reentry()) cctx.mvcc().addExplicitLock(threadId, cand, snapshot); GridTuple3<GridCacheVersion, V, byte[]> val = entry.versionedValue(); if (val == null) { GridDhtCacheEntry<K, V> dhtEntry = dht().peekExx(key); try { if (dhtEntry != null) val = dhtEntry.versionedValue(topVer); } catch (GridCacheEntryRemovedException ignored) { assert dhtEntry.obsolete() : " Got removed exception for non-obsolete entry: " + dhtEntry; if (log.isDebugEnabled()) log.debug( "Got removed exception for DHT entry in map (will ignore): " + dhtEntry); } } GridCacheVersion dhtVer = null; if (val != null) { dhtVer = val.get1(); valMap.put(key, val); } if (!cand.reentry()) { if (req == null) { req = new GridNearLockRequest<>( topVer, cctx.nodeId(), threadId, futId, lockVer, inTx(), implicitTx(), implicitSingleTx(), read, isolation(), isInvalidate(), timeout, syncCommit(), syncRollback(), mappedKeys.size(), inTx() ? tx.size() : mappedKeys.size(), inTx() ? tx.groupLockKey() : null, inTx() && tx.partitionLock(), inTx() ? tx.subjectId() : null); mapping.request(req); } distributedKeys.add(key); GridCacheTxEntry<K, V> writeEntry = tx != null ? tx.writeMap().get(key) : null; if (tx != null) tx.addKeyMapping(key, mapping.node()); req.addKeyBytes( key, node.isLocal() ? null : entry.getOrMarshalKeyBytes(), retval && dhtVer == null, dhtVer, // Include DHT version to match remote DHT entry. writeEntry, inTx() ? tx.entry(key).drVersion() : null, cctx); // Clear transfer required flag since we are sending message. if (writeEntry != null) writeEntry.transferRequired(false); } if (cand.reentry()) explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); } else // Ignore reentries within transactions. explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); if (explicit) tx.addKeyMapping(key, mapping.node()); break; } catch (GridCacheEntryRemovedException ignored) { assert entry.obsolete() : "Got removed exception on non-obsolete entry: " + entry; if (log.isDebugEnabled()) log.debug("Got removed entry in lockAsync(..) method (will retry): " + entry); } } // Mark mapping explicit lock flag. if (explicit) { boolean marked = tx != null && tx.markExplicit(node.id()); assert tx == null || marked; } } if (!distributedKeys.isEmpty()) mapping.distributedKeys(distributedKeys); else { assert mapping.request() == null; iter.remove(); } } cctx.mvcc().recheckPendingLocks(); proceedMapping(mappings); } catch (GridException ex) { onError(ex); } }
/** @param m Mapping. */ private void finish(GridDistributedTxMapping<K, V> m) { GridNode n = m.node(); assert !m.empty(); GridNearTxFinishRequest<K, V> req = new GridNearTxFinishRequest<>( futId, tx.xidVersion(), tx.threadId(), commit, tx.isInvalidate(), m.explicitLock(), tx.topologyVersion(), null, null, null, tx.size(), commit && tx.pessimistic() ? m.writes() : null, commit && tx.pessimistic() ? tx.writeEntries() : null, commit ? tx.syncCommit() : tx.syncRollback(), tx.subjectId(), tx.taskNameHash()); // If this is the primary node for the keys. if (n.isLocal()) { req.miniId(GridUuid.randomUuid()); if (CU.DHT_ENABLED) { GridFuture<GridCacheTx> fut = commit ? dht().commitTx(n.id(), req) : dht().rollbackTx(n.id(), req); // Add new future. add(fut); } else // Add done future for testing. add(new GridFinishedFuture<GridCacheTx>(ctx)); } else { MiniFuture fut = new MiniFuture(m); req.miniId(fut.futureId()); add(fut); // Append new future. if (tx.pessimistic()) cctx.tm().beforeFinishRemote(n.id(), tx.threadId()); try { cctx.io().send(n, req); // If we don't wait for result, then mark future as done. if (!isSync() && !m.explicitLock()) fut.onDone(); } catch (GridTopologyException e) { // Remove previous mapping. mappings.remove(m.node().id()); fut.onResult(e); } catch (GridException e) { // Fail the whole thing. fut.onResult(e); } } }