/** * Computes the most dominant eigen vector of A using an inverted shifted matrix. The inverted * shifted matrix is defined as <b>B = (A - αI)<sup>-1</sup></b> and can converge faster if * α is chosen wisely. * * @param A An invertible square matrix matrix. * @param alpha Shifting factor. * @return If it converged or not. */ public boolean computeShiftInvert(DenseMatrix64F A, double alpha) { initPower(A); LinearSolver solver = LinearSolverFactory.linear(A.numCols); SpecializedOps.addIdentity(A, B, -alpha); solver.setA(B); boolean converged = false; for (int i = 0; i < maxIterations && !converged; i++) { solver.solve(q0, q1); double s = NormOps.normPInf(q1); CommonOps.divide(q1, s, q2); converged = checkConverged(A); } return converged; }
/** * Computes the most dominant eigen vector of A using a shifted matrix. The shifted matrix is * defined as <b>B = A - αI</b> and can converge faster if α is chosen wisely. In * general it is easier to choose a value for α that will converge faster with the * shift-invert strategy than this one. * * @param A The matrix. * @param alpha Shifting factor. * @return If it converged or not. */ public boolean computeShiftDirect(DenseMatrix64F A, double alpha) { SpecializedOps.addIdentity(A, B, -alpha); return computeDirect(B); }