public MomentumSolver3(
      SixDoFJoint rootJoint,
      RigidBody elevator,
      ReferenceFrame centerOfMassFrame,
      TwistCalculator twistCalculator,
      LinearSolver<DenseMatrix64F> jacobianSolver,
      double controlDT,
      YoVariableRegistry parentRegistry) {
    this.rootJoint = rootJoint;
    this.jointsInOrder = ScrewTools.computeSupportAndSubtreeJoints(rootJoint.getSuccessor());

    this.motionConstraintHandler =
        new MotionConstraintHandler("solver3", jointsInOrder, twistCalculator, null, registry);

    this.centroidalMomentumMatrix = new CentroidalMomentumMatrix(elevator, centerOfMassFrame);
    this.previousCentroidalMomentumMatrix =
        new DenseMatrix64F(
            centroidalMomentumMatrix.getMatrix().getNumRows(),
            centroidalMomentumMatrix.getMatrix().getNumCols());
    this.centroidalMomentumMatrixDerivative =
        new DenseMatrix64F(
            centroidalMomentumMatrix.getMatrix().getNumRows(),
            centroidalMomentumMatrix.getMatrix().getNumCols());
    yoPreviousCentroidalMomentumMatrix =
        new DoubleYoVariable[previousCentroidalMomentumMatrix.getNumRows()]
            [previousCentroidalMomentumMatrix.getNumCols()];
    MatrixYoVariableConversionTools.populateYoVariables(
        yoPreviousCentroidalMomentumMatrix, "previousCMMatrix", registry);

    this.controlDT = controlDT;

    nDegreesOfFreedom = ScrewTools.computeDegreesOfFreedom(jointsInOrder);
    this.b = new DenseMatrix64F(SpatialMotionVector.SIZE, 1);
    this.v = new DenseMatrix64F(nDegreesOfFreedom, 1);

    //      nullspaceMotionConstraintEnforcer = new
    // EqualityConstraintEnforcer(LinearSolverFactory.pseudoInverse(true));
    equalityConstraintEnforcer =
        new EqualityConstraintEnforcer(LinearSolverFactory.pseudoInverse(true));

    solver = LinearSolverFactory.pseudoInverse(true);

    parentRegistry.addChild(registry);
    reset();
  }
  /**
   * Computes inverse coefficients
   *
   * @param border
   * @param forward Forward coefficients.
   * @param inverse Inverse used in the inner portion of the data stream.
   * @return
   */
  private static WlBorderCoef<WlCoef_F32> computeBorderCoefficients(
      BorderIndex1D border, WlCoef_F32 forward, WlCoef_F32 inverse) {
    int N = Math.max(forward.getScalingLength(), forward.getWaveletLength());
    N += N % 2;
    N *= 2;
    border.setLength(N);

    // Because the wavelet transform is a linear invertible system the inverse coefficients
    // can be found by creating a matrix and inverting the matrix.  Boundary conditions are then
    // extracted from this inverted matrix.
    DenseMatrix64F A = new DenseMatrix64F(N, N);
    for (int i = 0; i < N; i += 2) {

      for (int j = 0; j < forward.scaling.length; j++) {
        int index = border.getIndex(j + i + forward.offsetScaling);
        A.add(i, index, forward.scaling[j]);
      }

      for (int j = 0; j < forward.wavelet.length; j++) {
        int index = border.getIndex(j + i + forward.offsetWavelet);
        A.add(i + 1, index, forward.wavelet[j]);
      }
    }

    LinearSolver<DenseMatrix64F> solver = LinearSolverFactory.linear(N);
    if (!solver.setA(A) || solver.quality() < 1e-5) {
      throw new IllegalArgumentException("Can't invert matrix");
    }

    DenseMatrix64F A_inv = new DenseMatrix64F(N, N);
    solver.invert(A_inv);

    int numBorder = UtilWavelet.borderForwardLower(inverse) / 2;

    WlBorderCoefFixed<WlCoef_F32> ret = new WlBorderCoefFixed<>(numBorder, numBorder + 1);
    ret.setInnerCoef(inverse);

    // add the lower coefficients first
    for (int i = 0; i < ret.getLowerLength(); i++) {
      computeLowerCoef(inverse, A_inv, ret, i * 2);
    }

    // add upper coefficients
    for (int i = 0; i < ret.getUpperLength(); i++) {
      computeUpperCoef(inverse, N, A_inv, ret, i * 2);
    }

    return ret;
  }
示例#3
0
  /**
   * Computes the most dominant eigen vector of A using an inverted shifted matrix. The inverted
   * shifted matrix is defined as <b>B = (A - &alpha;I)<sup>-1</sup></b> and can converge faster if
   * &alpha; is chosen wisely.
   *
   * @param A An invertible square matrix matrix.
   * @param alpha Shifting factor.
   * @return If it converged or not.
   */
  public boolean computeShiftInvert(DenseMatrix64F A, double alpha) {
    initPower(A);

    LinearSolver solver = LinearSolverFactory.linear(A.numCols);

    SpecializedOps.addIdentity(A, B, -alpha);
    solver.setA(B);

    boolean converged = false;

    for (int i = 0; i < maxIterations && !converged; i++) {
      solver.solve(q0, q1);
      double s = NormOps.normPInf(q1);
      CommonOps.divide(q1, s, q2);

      converged = checkConverged(A);
    }

    return converged;
  }
示例#4
0
文件: CPM.java 项目: fpl/s1tbx
  private void estimateCPM() {

    logger.info("Start EJML Estimation");

    numIterations = 0;
    boolean estimationDone = false;

    DenseMatrix64F eL_hat = null;
    DenseMatrix64F eP_hat = null;
    DenseMatrix64F rhsL = null;
    DenseMatrix64F rhsP = null;

    // normalize master coordinates for stability -- only master!
    TDoubleArrayList yMasterNorm = new TDoubleArrayList();
    TDoubleArrayList xMasterNorm = new TDoubleArrayList();
    for (int i = 0; i < yMaster.size(); i++) {
      yMasterNorm.add(PolyUtils.normalize2(yMaster.getQuick(i), normWin.linelo, normWin.linehi));
      xMasterNorm.add(PolyUtils.normalize2(xMaster.getQuick(i), normWin.pixlo, normWin.pixhi));
    }

    // helper variables
    int winL;
    int winP;
    int maxWSum_idx = 0;

    while (!estimationDone) {

      String codeBlockMessage = "LS ESTIMATION PROCEDURE";
      StopWatch stopWatch = new StopWatch();
      StopWatch clock = new StopWatch();
      clock.start();
      stopWatch.setTag(codeBlockMessage);
      stopWatch.start();

      logger.info("Start iteration: {}" + numIterations);

      /** Remove identified outlier from previous estimation */
      if (numIterations != 0) {
        logger.info(
            "Removing observation {}, idxList {},  from observation vector."
                + index.getQuick(maxWSum_idx)
                + maxWSum_idx);
        index.removeAt(maxWSum_idx);
        yMasterNorm.removeAt(maxWSum_idx);
        xMasterNorm.removeAt(maxWSum_idx);
        yOffset.removeAt(maxWSum_idx);
        xOffset.removeAt(maxWSum_idx);

        // only for outlier removal
        yMaster.removeAt(maxWSum_idx);
        xMaster.removeAt(maxWSum_idx);
        ySlave.removeAt(maxWSum_idx);
        xSlave.removeAt(maxWSum_idx);
        coherence.removeAt(maxWSum_idx);

        // also take care of slave pins
        slaveGCPList.remove(maxWSum_idx);

        //                if (demRefinement) {
        //                    ySlaveGeometry.removeAt(maxWSum_idx);
        //                    xSlaveGeometry.removeAt(maxWSum_idx);
        //                }

      }

      /** Check redundancy */
      numObservations = index.size(); // Number of points > threshold
      if (numObservations < numUnknowns) {
        logger.severe(
            "coregpm: Number of windows > threshold is smaller than parameters solved for.");
        throw new ArithmeticException(
            "coregpm: Number of windows > threshold is smaller than parameters solved for.");
      }

      // work with normalized values
      DenseMatrix64F A =
          new DenseMatrix64F(
              SystemOfEquations.constructDesignMatrix_loop(
                  yMasterNorm.toArray(), xMasterNorm.toArray(), cpmDegree));

      logger.info("TIME FOR SETUP of SYSTEM : {}" + stopWatch.lap("setup"));

      RowD1Matrix64F Qy_1; // vector
      double meanValue;
      switch (cpmWeight) {
        case "linear":
          logger.info("Using sqrt(coherence) as weights");
          Qy_1 = DenseMatrix64F.wrap(numObservations, 1, coherence.toArray());
          // Normalize weights to avoid influence on estimated var.factor
          logger.info("Normalizing covariance matrix for LS estimation");
          meanValue = CommonOps.elementSum(Qy_1) / numObservations;
          CommonOps.divide(meanValue, Qy_1); // normalize vector
          break;
        case "quadratic":
          logger.info("Using coherence as weights.");
          Qy_1 = DenseMatrix64F.wrap(numObservations, 1, coherence.toArray());
          CommonOps.elementMult(Qy_1, Qy_1);
          // Normalize weights to avoid influence on estimated var.factor
          meanValue = CommonOps.elementSum(Qy_1) / numObservations;
          logger.info("Normalizing covariance matrix for LS estimation.");
          CommonOps.divide(meanValue, Qy_1); // normalize vector
          break;
        case "bamler":
          // TODO: see Bamler papers IGARSS 2000 and 2004
          logger.warning("Bamler weighting method NOT IMPLEMENTED, falling back to None.");
          Qy_1 = onesEJML(numObservations);
          break;
        case "none":
          logger.info("No weighting.");
          Qy_1 = onesEJML(numObservations);
          break;
        default:
          Qy_1 = onesEJML(numObservations);
          break;
      }

      logger.info("TIME FOR SETUP of VC diag matrix: {}" + stopWatch.lap("diag VC matrix"));

      /** tempMatrix_1 matrices */
      final DenseMatrix64F yL_matrix = DenseMatrix64F.wrap(numObservations, 1, yOffset.toArray());
      final DenseMatrix64F yP_matrix = DenseMatrix64F.wrap(numObservations, 1, xOffset.toArray());
      logger.info("TIME FOR SETUP of TEMP MATRICES: {}" + stopWatch.lap("Temp matrices"));

      /** normal matrix */
      final DenseMatrix64F N =
          new DenseMatrix64F(numUnknowns, numUnknowns); // = A_transpose.mmul(Qy_1_diag.mmul(A));

      /*
                  // fork/join parallel implementation
                  RowD1Matrix64F result = A.copy();
                  DiagXMat dd = new DiagXMat(Qy_1, A, 0, A.numRows, result);
                  ForkJoinPool pool = new ForkJoinPool();
                  pool.invoke(dd);
                  CommonOps.multAddTransA(A, dd.result, N);
      */

      CommonOps.multAddTransA(A, diagxmat(Qy_1, A), N);
      DenseMatrix64F Qx_hat = N.copy();

      logger.info("TIME FOR SETUP of NORMAL MATRIX: {}" + stopWatch.lap("Normal matrix"));

      /** right hand sides */
      // azimuth
      rhsL = new DenseMatrix64F(numUnknowns, 1); // A_transpose.mmul(Qy_1_diag.mmul(yL_matrix));
      CommonOps.multAddTransA(1d, A, diagxmat(Qy_1, yL_matrix), rhsL);
      // range
      rhsP = new DenseMatrix64F(numUnknowns, 1); // A_transpose.mmul(Qy_1_diag.mmul(yP_matrix));
      CommonOps.multAddTransA(1d, A, diagxmat(Qy_1, yP_matrix), rhsP);
      logger.info("TIME FOR SETUP of RightHand Side: {}" + stopWatch.lap("Right-hand-side"));

      LinearSolver<DenseMatrix64F> solver = LinearSolverFactory.leastSquares(100, 100);
      /** compute solution */
      if (!solver.setA(Qx_hat)) {
        throw new IllegalArgumentException("Singular Matrix");
      }
      solver.solve(rhsL, rhsL);
      solver.solve(rhsP, rhsP);
      logger.info("TIME FOR SOLVING of System: {}" + stopWatch.lap("Solving System"));

      /** inverting of Qx_hat for stability check */
      solver.invert(Qx_hat);

      logger.info("TIME FOR INVERSION OF N: {}" + stopWatch.lap("Inversion of N"));

      /** test inversion and check stability: max(abs([N*inv(N) - E)) ?= 0 */
      DenseMatrix64F tempMatrix_1 = new DenseMatrix64F(N.numRows, N.numCols);
      CommonOps.mult(N, Qx_hat, tempMatrix_1);
      CommonOps.subEquals(
          tempMatrix_1, CommonOps.identity(tempMatrix_1.numRows, tempMatrix_1.numCols));
      double maxDeviation = CommonOps.elementMaxAbs(tempMatrix_1);
      if (maxDeviation > .01) {
        logger.severe(
            "COREGPM: maximum deviation N*inv(N) from unity = {}. This is larger than 0.01"
                + maxDeviation);
        throw new IllegalStateException("COREGPM: maximum deviation N*inv(N) from unity)");
      } else if (maxDeviation > .001) {
        logger.warning(
            "COREGPM: maximum deviation N*inv(N) from unity = {}. This is between 0.01 and 0.001"
                + maxDeviation);
      }
      logger.info("TIME FOR STABILITY CHECK: {}" + stopWatch.lap("Stability Check"));

      logger.info("Coeffs in Azimuth direction: {}" + rhsL.toString());
      logger.info("Coeffs in Range direction: {}" + rhsP.toString());
      logger.info("Max Deviation: {}" + maxDeviation);
      logger.info("System Quality: {}" + solver.quality());

      /** some other stuff if the scale is okay */
      DenseMatrix64F Qe_hat = new DenseMatrix64F(numObservations, numObservations);
      DenseMatrix64F tempMatrix_2 = new DenseMatrix64F(numObservations, numUnknowns);

      CommonOps.mult(A, Qx_hat, tempMatrix_2);
      CommonOps.multTransB(-1, tempMatrix_2, A, Qe_hat);
      scaleInputDiag(Qe_hat, Qy_1);

      // solution: Azimuth
      DenseMatrix64F yL_hat = new DenseMatrix64F(numObservations, 1);
      eL_hat = new DenseMatrix64F(numObservations, 1);
      CommonOps.mult(A, rhsL, yL_hat);
      CommonOps.sub(yL_matrix, yL_hat, eL_hat);

      // solution: Range
      DenseMatrix64F yP_hat = new DenseMatrix64F(numObservations, 1);
      eP_hat = new DenseMatrix64F(numObservations, 1);
      CommonOps.mult(A, rhsP, yP_hat);
      CommonOps.sub(yP_matrix, yP_hat, eP_hat);

      logger.info("TIME FOR DATA preparation for TESTING: {}" + stopWatch.lap("Testing Setup"));

      /** overal model test (variance factor) */
      double overAllModelTest_L = 0;
      double overAllModelTest_P = 0;

      for (int i = 0; i < numObservations; i++) {
        overAllModelTest_L += FastMath.pow(eL_hat.get(i), 2) * Qy_1.get(i);
        overAllModelTest_P += FastMath.pow(eP_hat.get(i), 2) * Qy_1.get(i);
      }

      overAllModelTest_L =
          (overAllModelTest_L / FastMath.pow(SIGMA_L, 2)) / (numObservations - numUnknowns);
      overAllModelTest_P =
          (overAllModelTest_P / FastMath.pow(SIGMA_P, 2)) / (numObservations - numUnknowns);

      logger.info("Overall Model Test Lines: {}" + overAllModelTest_L);
      logger.info("Overall Model Test Pixels: {}" + overAllModelTest_P);

      logger.info("TIME FOR OMT: {}" + stopWatch.lap("OMT"));

      /** ---------------------- DATASNOPING ----------------------------------- * */
      /** Assumed Qy diag */

      /** initialize */
      DenseMatrix64F wTest_L = new DenseMatrix64F(numObservations, 1);
      DenseMatrix64F wTest_P = new DenseMatrix64F(numObservations, 1);

      for (int i = 0; i < numObservations; i++) {
        wTest_L.set(i, eL_hat.get(i) / (Math.sqrt(Qe_hat.get(i, i)) * SIGMA_L));
        wTest_P.set(i, eP_hat.get(i) / (Math.sqrt(Qe_hat.get(i, i)) * SIGMA_P));
      }

      /** find maxima's */
      // azimuth
      winL = absArgmax(wTest_L);
      double maxWinL = Math.abs(wTest_L.get(winL));
      logger.info(
          "maximum wtest statistic azimuth = {} for window number: {} "
              + maxWinL
              + index.getQuick(winL));

      // range
      winP = absArgmax(wTest_P);
      double maxWinP = Math.abs(wTest_P.get(winP));
      logger.info(
          "maximum wtest statistic range = {} for window number: {} "
              + maxWinP
              + index.getQuick(winP));

      /** use summed wTest in Azimuth and Range direction for outlier detection */
      DenseMatrix64F wTestSum = new DenseMatrix64F(numObservations);
      for (int i = 0; i < numObservations; i++) {
        wTestSum.set(i, FastMath.pow(wTest_L.get(i), 2) + FastMath.pow(wTest_P.get(i), 2));
      }

      maxWSum_idx = absArgmax(wTest_P);
      double maxWSum = wTest_P.get(winP);
      logger.info(
          "Detected outlier: summed sqr.wtest = {}; observation: {}"
              + maxWSum
              + index.getQuick(maxWSum_idx));

      /** Test if we are estimationDone yet */
      // check on number of observations
      if (numObservations <= numUnknowns) {
        logger.warning("NO redundancy!  Exiting iterations.");
        estimationDone = true; // cannot remove more than this
      }

      // check on test k_alpha
      if (Math.max(maxWinL, maxWinP) <= criticalValue) {
        // all tests accepted?
        logger.info("All outlier tests accepted! (final solution computed)");
        estimationDone = true;
      }

      if (numIterations >= maxIterations) {
        logger.info("max. number of iterations reached (exiting loop).");
        estimationDone = true; // we reached max. (or no max_iter specified)
      }

      /** Only warn if last iteration has been estimationDone */
      if (estimationDone) {
        if (overAllModelTest_L > 10) {
          logger.warning(
              "COREGPM: Overall Model Test, Lines = {} is larger than 10. (Suggest model or a priori sigma not correct.)"
                  + overAllModelTest_L);
        }
        if (overAllModelTest_P > 10) {
          logger.warning(
              "COREGPM: Overall Model Test, Pixels = {} is larger than 10. (Suggest model or a priori sigma not correct.)"
                  + overAllModelTest_P);
        }

        /** if a priori sigma is correct, max wtest should be something like 1.96 */
        if (Math.max(maxWinL, maxWinP) > 200.0) {
          logger.warning(
              "Recommendation: remove window number: {} and re-run step COREGPM.  max. wtest is: {}."
                  + index.get(winL)
                  + Math.max(maxWinL, maxWinP));
        }
      }

      logger.info("TIME FOR wTestStatistics: {}" + stopWatch.lap("WTEST"));
      logger.info("Total Estimation TIME: {}" + clock.getElapsedTime());

      numIterations++; // update counter here!
    } // only warn when iterating

    yError = eL_hat.getData();
    xError = eP_hat.getData();

    yCoef = rhsL.getData();
    xCoef = rhsP.getData();
  }
/**
 * Computes the Sampson distance residual for a set of observations given a homography matrix. For
 * use in least-squares non-linear optimization algorithms. The full 9 elements of the 3x3 matrix
 * are used to parameterize. This has an extra redundant parameter, but is much simpler and should
 * not affect the final result.
 *
 * <p>R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge
 * 2003
 *
 * @author Peter Abeles
 */
public class HomographyResidualSampson
    implements ModelObservationResidualN<DenseMatrix64F, AssociatedPair> {

  DenseMatrix64F H;
  Point2D_F64 temp = new Point2D_F64();

  DenseMatrix64F J = new DenseMatrix64F(2, 4);
  DenseMatrix64F JJ = new DenseMatrix64F(2, 2);
  DenseMatrix64F e = new DenseMatrix64F(2, 1);
  DenseMatrix64F x = new DenseMatrix64F(2, 1);
  DenseMatrix64F error = new DenseMatrix64F(4, 1);

  LinearSolver<DenseMatrix64F> solver = LinearSolverFactory.linear(2);

  @Override
  public void setModel(DenseMatrix64F F) {
    this.H = F;
  }

  @Override
  public int computeResiduals(AssociatedPair p, double[] residuals, int index) {

    GeometryMath_F64.mult(H, p.p1, temp);

    double top1 = error1(p.p1.x, p.p1.y, p.p2.x, p.p2.y);
    double top2 = error2(p.p1.x, p.p1.y, p.p2.x, p.p2.y);

    computeJacobian(p.p1, p.p2);
    // JJ = J*J'
    CommonOps.multTransB(J, J, JJ);

    // solve JJ'*x = -e
    e.data[0] = -top1;
    e.data[1] = -top2;

    if (solver.setA(JJ)) {
      solver.solve(e, x);
      // -J'(J*J')^-1*e
      CommonOps.multTransA(J, x, error);
      residuals[index++] = error.data[0];
      residuals[index++] = error.data[1];
      residuals[index++] = error.data[2];
      residuals[index++] = error.data[3];
    } else {
      residuals[index++] = 0;
      residuals[index++] = 0;
      residuals[index++] = 0;
      residuals[index++] = 0;
    }

    return index;
  }

  /** x2 = H*x1 */
  public double error1(double x1, double y1, double x2, double y2) {
    double ret;

    ret = -(x1 * H.get(1, 0) + y1 * H.get(1, 1) + H.get(1, 2));
    ret += y2 * (x1 * H.get(2, 0) + y1 * H.get(2, 1) + H.get(2, 2));

    return ret;
  }

  public double error2(double x1, double y1, double x2, double y2) {
    double ret;

    ret = (x1 * H.get(0, 0) + y1 * H.get(0, 1) + H.get(0, 2));
    ret -= x2 * (x1 * H.get(2, 0) + y1 * H.get(2, 1) + H.get(2, 2));

    return ret;
  }

  public void computeJacobian(Point2D_F64 x1, Point2D_F64 x2) {
    J.data[0] = -H.get(1, 0) + x2.y * H.get(2, 0);
    J.data[1] = -H.get(1, 1) + x2.y * H.get(2, 1);
    J.data[2] = 0;
    J.data[3] = x1.x * H.get(2, 0) + x1.y * H.get(2, 1) + H.get(2, 2);

    J.data[4] = H.get(0, 0) - x2.x * H.get(2, 0);
    J.data[5] = H.get(0, 1) - x2.x * H.get(2, 1);
    J.data[6] = -J.data[3];
    J.data[7] = 0;
  }

  @Override
  public int getN() {
    return 4;
  }
}