double scaleAndRegularize( MultiDimensionalMap<String, String, INDArray> derivatives, MultiDimensionalMap<String, String, INDArray> currentMatrices, double scale, double regCost) { double cost = 0.0f; // the regularization cost for (MultiDimensionalMap.Entry<String, String, INDArray> entry : currentMatrices.entrySet()) { INDArray D = derivatives.get(entry.getFirstKey(), entry.getSecondKey()); if (D.data().dataType() == DataBuffer.Type.DOUBLE) D = Nd4j.getBlasWrapper() .scal(scale, D) .addi(Nd4j.getBlasWrapper().scal(regCost, entry.getValue())); else D = Nd4j.getBlasWrapper() .scal((float) scale, D) .addi(Nd4j.getBlasWrapper().scal((float) regCost, entry.getValue())); derivatives.put(entry.getFirstKey(), entry.getSecondKey(), D); cost += entry.getValue().mul(entry.getValue()).sum(Integer.MAX_VALUE).getDouble(0) * regCost / 2.0; } return cost; }
public FloatMatrix getBinaryClassification(String left, String right) { if (combineClassification) { return unaryClassification.get(""); } else { left = basicCategory(left); right = basicCategory(right); return binaryClassification.get(left, right); } }
public FloatMatrix getWForNode(Tree node) { if (node.children().size() == 2) { String leftLabel = node.children().get(0).value(); String leftBasic = basicCategory(leftLabel); String rightLabel = node.children().get(1).value(); String rightBasic = basicCategory(rightLabel); return binaryTransform.get(leftBasic, rightBasic); } else if (node.children().size() == 1) { throw new AssertionError("No unary transform matrices, only unary classification"); } else { throw new AssertionError("Unexpected tree children size of " + node.children().size()); } }
float scaleAndRegularizeFloatTensor( MultiDimensionalMap<String, String, FloatTensor> derivatives, MultiDimensionalMap<String, String, FloatTensor> currentMatrices, float scale, float regCost) { float cost = 0.0f; // the regularization cost for (MultiDimensionalMap.Entry<String, String, FloatTensor> entry : currentMatrices.entrySet()) { FloatTensor D = derivatives.get(entry.getFirstKey(), entry.getSecondKey()); D = D.scale(scale).add(entry.getValue().scale(regCost)); derivatives.put(entry.getFirstKey(), entry.getSecondKey(), D); cost += entry.getValue().mul(entry.getValue()).sum() * regCost / 2.0; } return cost; }
public INDArray getINDArrayForNode(Tree node) { if (!useDoubleTensors) { throw new AssertionError("Not using tensors"); } if (node.children().size() == 2) { String leftLabel = node.children().get(0).value(); String leftBasic = basicCategory(leftLabel); String rightLabel = node.children().get(1).value(); String rightBasic = basicCategory(rightLabel); return binaryTensors.get(leftBasic, rightBasic); } else if (node.children().size() == 1) { throw new AssertionError("No unary transform matrices, only unary classification"); } else { throw new AssertionError("Unexpected tree children size of " + node.children().size()); } }
public FloatMatrix getClassWForNode(Tree node) { if (combineClassification) { return unaryClassification.get(""); } else if (node.children().size() == 2) { String leftLabel = node.children().get(0).value(); String leftBasic = basicCategory(leftLabel); String rightLabel = node.children().get(1).value(); String rightBasic = basicCategory(rightLabel); return binaryClassification.get(leftBasic, rightBasic); } else if (node.children().size() == 1) { String unaryLabel = node.children().get(0).value(); String unaryBasic = basicCategory(unaryLabel); return unaryClassification.get(unaryBasic); } else { throw new AssertionError("Unexpected tree children size of " + node.children().size()); } }
double scaleAndRegularizeINDArray( MultiDimensionalMap<String, String, INDArray> derivatives, MultiDimensionalMap<String, String, INDArray> currentMatrices, double scale, double regCost) { double cost = 0.0f; // the regularization cost for (MultiDimensionalMap.Entry<String, String, INDArray> entry : currentMatrices.entrySet()) { INDArray D = derivatives.get(entry.getFirstKey(), entry.getSecondKey()); D = D.muli(scale).add(entry.getValue().muli(regCost)); derivatives.put(entry.getFirstKey(), entry.getSecondKey(), D); cost += entry.getValue().mul(entry.getValue()).sum(Integer.MAX_VALUE).getDouble(0) * regCost / 2.0f; } return cost; }
private void backpropDerivativesAndError( Tree tree, MultiDimensionalMap<String, String, FloatMatrix> binaryTD, MultiDimensionalMap<String, String, FloatMatrix> binaryCD, MultiDimensionalMap<String, String, FloatTensor> binaryFloatTensorTD, Map<String, FloatMatrix> unaryCD, Map<String, FloatMatrix> wordVectorD, FloatMatrix deltaUp) { if (tree.isLeaf()) { return; } FloatMatrix currentVector = tree.vector(); String category = tree.label(); category = basicCategory(category); // Build a vector that looks like 0,0,1,0,0 with an indicator for the correct class FloatMatrix goldLabel = new FloatMatrix(numOuts, 1); int goldClass = tree.goldLabel(); if (goldClass >= 0) { goldLabel.put(goldClass, 1.0f); } Float nodeWeight = classWeights.get(goldClass); if (nodeWeight == null) nodeWeight = 1.0f; FloatMatrix predictions = tree.prediction(); // If this is an unlabeled class, set deltaClass to 0. We could // make this more efficient by eliminating various of the below // calculations, but this would be the easiest way to handle the // unlabeled class FloatMatrix deltaClass = goldClass >= 0 ? SimpleBlas.scal(nodeWeight, predictions.sub(goldLabel)) : new FloatMatrix(predictions.rows, predictions.columns); FloatMatrix localCD = deltaClass.mmul(appendBias(currentVector).transpose()); float error = -(MatrixFunctions.log(predictions).muli(goldLabel).sum()); error = error * nodeWeight; tree.setError(error); if (tree.isPreTerminal()) { // below us is a word vector unaryCD.put(category, unaryCD.get(category).add(localCD)); String word = tree.children().get(0).label(); word = getVocabWord(word); FloatMatrix currentVectorDerivative = activationFunction.apply(currentVector); FloatMatrix deltaFromClass = getUnaryClassification(category).transpose().mmul(deltaClass); deltaFromClass = deltaFromClass.get(interval(0, numHidden), interval(0, 1)).mul(currentVectorDerivative); FloatMatrix deltaFull = deltaFromClass.add(deltaUp); wordVectorD.put(word, wordVectorD.get(word).add(deltaFull)); } else { // Otherwise, this must be a binary node String leftCategory = basicCategory(tree.children().get(0).label()); String rightCategory = basicCategory(tree.children().get(1).label()); if (combineClassification) { unaryCD.put("", unaryCD.get("").add(localCD)); } else { binaryCD.put( leftCategory, rightCategory, binaryCD.get(leftCategory, rightCategory).add(localCD)); } FloatMatrix currentVectorDerivative = activationFunction.applyDerivative(currentVector); FloatMatrix deltaFromClass = getBinaryClassification(leftCategory, rightCategory).transpose().mmul(deltaClass); FloatMatrix mult = deltaFromClass.get(interval(0, numHidden), interval(0, 1)); deltaFromClass = mult.muli(currentVectorDerivative); FloatMatrix deltaFull = deltaFromClass.add(deltaUp); FloatMatrix leftVector = tree.children().get(0).vector(); FloatMatrix rightVector = tree.children().get(1).vector(); FloatMatrix childrenVector = appendBias(leftVector, rightVector); // deltaFull 50 x 1, childrenVector: 50 x 2 FloatMatrix add = binaryTD.get(leftCategory, rightCategory); FloatMatrix W_df = deltaFromClass.mmul(childrenVector.transpose()); binaryTD.put(leftCategory, rightCategory, add.add(W_df)); FloatMatrix deltaDown; if (useFloatTensors) { FloatTensor Wt_df = getFloatTensorGradient(deltaFull, leftVector, rightVector); binaryFloatTensorTD.put( leftCategory, rightCategory, binaryFloatTensorTD.get(leftCategory, rightCategory).add(Wt_df)); deltaDown = computeFloatTensorDeltaDown( deltaFull, leftVector, rightVector, getBinaryTransform(leftCategory, rightCategory), getBinaryFloatTensor(leftCategory, rightCategory)); } else { deltaDown = getBinaryTransform(leftCategory, rightCategory).transpose().mmul(deltaFull); } FloatMatrix leftDerivative = activationFunction.apply(leftVector); FloatMatrix rightDerivative = activationFunction.apply(rightVector); FloatMatrix leftDeltaDown = deltaDown.get(interval(0, deltaFull.rows), interval(0, 1)); FloatMatrix rightDeltaDown = deltaDown.get(interval(deltaFull.rows, deltaFull.rows * 2), interval(0, 1)); backpropDerivativesAndError( tree.children().get(0), binaryTD, binaryCD, binaryFloatTensorTD, unaryCD, wordVectorD, leftDerivative.mul(leftDeltaDown)); backpropDerivativesAndError( tree.children().get(1), binaryTD, binaryCD, binaryFloatTensorTD, unaryCD, wordVectorD, rightDerivative.mul(rightDeltaDown)); } }
public FloatTensor getBinaryFloatTensor(String left, String right) { left = basicCategory(left); right = basicCategory(right); return binaryFloatTensors.get(left, right); }
public FloatMatrix getBinaryTransform(String left, String right) { left = basicCategory(left); right = basicCategory(right); return binaryTransform.get(left, right); }
private void backpropDerivativesAndError( Tree tree, MultiDimensionalMap<String, String, INDArray> binaryTD, MultiDimensionalMap<String, String, INDArray> binaryCD, MultiDimensionalMap<String, String, INDArray> binaryINDArrayTD, Map<String, INDArray> unaryCD, Map<String, INDArray> wordVectorD, INDArray deltaUp) { if (tree.isLeaf()) { return; } INDArray currentVector = tree.vector(); String category = tree.label(); category = basicCategory(category); // Build a vector that looks like 0,0,1,0,0 with an indicator for the correct class INDArray goldLabel = Nd4j.create(numOuts, 1); int goldClass = tree.goldLabel(); if (goldClass >= 0) { assert goldClass <= numOuts : "Tried adding a label that was >= to the number of configured outputs " + numOuts + " with label " + goldClass; goldLabel.putScalar(goldClass, 1.0f); } Double nodeWeight = classWeights.get(goldClass); if (nodeWeight == null) nodeWeight = 1.0; INDArray predictions = tree.prediction(); // If this is an unlabeled class, transform deltaClass to 0. We could // make this more efficient by eliminating various of the below // calculations, but this would be the easiest way to handle the // unlabeled class INDArray deltaClass = null; if (predictions.data().dataType() == DataBuffer.Type.DOUBLE) { deltaClass = goldClass >= 0 ? Nd4j.getBlasWrapper().scal(nodeWeight, predictions.sub(goldLabel)) : Nd4j.create(predictions.rows(), predictions.columns()); } else { deltaClass = goldClass >= 0 ? Nd4j.getBlasWrapper() .scal((float) nodeWeight.doubleValue(), predictions.sub(goldLabel)) : Nd4j.create(predictions.rows(), predictions.columns()); } INDArray localCD = deltaClass.mmul(Nd4j.appendBias(currentVector).transpose()); double error = -(Transforms.log(predictions).muli(goldLabel).sum(Integer.MAX_VALUE).getDouble(0)); error = error * nodeWeight; tree.setError(error); if (tree.isPreTerminal()) { // below us is a word vector unaryCD.put(category, unaryCD.get(category).add(localCD)); String word = tree.children().get(0).label(); word = getVocabWord(word); INDArray currentVectorDerivative = Nd4j.getExecutioner() .execAndReturn( Nd4j.getOpFactory().createTransform(activationFunction, currentVector)); INDArray deltaFromClass = getUnaryClassification(category).transpose().mmul(deltaClass); deltaFromClass = deltaFromClass.get(interval(0, numHidden), interval(0, 1)).mul(currentVectorDerivative); INDArray deltaFull = deltaFromClass.add(deltaUp); INDArray wordVector = wordVectorD.get(word); wordVectorD.put(word, wordVector.add(deltaFull)); } else { // Otherwise, this must be a binary node String leftCategory = basicCategory(tree.children().get(0).label()); String rightCategory = basicCategory(tree.children().get(1).label()); if (combineClassification) { unaryCD.put("", unaryCD.get("").add(localCD)); } else { binaryCD.put( leftCategory, rightCategory, binaryCD.get(leftCategory, rightCategory).add(localCD)); } INDArray currentVectorDerivative = Nd4j.getExecutioner() .execAndReturn( Nd4j.getOpFactory().createTransform(activationFunction, currentVector)); INDArray deltaFromClass = getBinaryClassification(leftCategory, rightCategory).transpose().mmul(deltaClass); INDArray mult = deltaFromClass.get(interval(0, numHidden), interval(0, 1)); deltaFromClass = mult.muli(currentVectorDerivative); INDArray deltaFull = deltaFromClass.add(deltaUp); INDArray leftVector = tree.children().get(0).vector(); INDArray rightVector = tree.children().get(1).vector(); INDArray childrenVector = Nd4j.appendBias(leftVector, rightVector); // deltaFull 50 x 1, childrenVector: 50 x 2 INDArray add = binaryTD.get(leftCategory, rightCategory); INDArray W_df = deltaFromClass.mmul(childrenVector.transpose()); binaryTD.put(leftCategory, rightCategory, add.add(W_df)); INDArray deltaDown; if (useDoubleTensors) { INDArray Wt_df = getINDArrayGradient(deltaFull, leftVector, rightVector); binaryINDArrayTD.put( leftCategory, rightCategory, binaryINDArrayTD.get(leftCategory, rightCategory).add(Wt_df)); deltaDown = computeINDArrayDeltaDown( deltaFull, leftVector, rightVector, getBinaryTransform(leftCategory, rightCategory), getBinaryINDArray(leftCategory, rightCategory)); } else { deltaDown = getBinaryTransform(leftCategory, rightCategory).transpose().mmul(deltaFull); } INDArray leftDerivative = Nd4j.getExecutioner() .execAndReturn(Nd4j.getOpFactory().createTransform(activationFunction, leftVector)); INDArray rightDerivative = Nd4j.getExecutioner() .execAndReturn(Nd4j.getOpFactory().createTransform(activationFunction, rightVector)); INDArray leftDeltaDown = deltaDown.get(interval(0, deltaFull.rows()), interval(0, 1)); INDArray rightDeltaDown = deltaDown.get(interval(deltaFull.rows(), deltaFull.rows() * 2), interval(0, 1)); backpropDerivativesAndError( tree.children().get(0), binaryTD, binaryCD, binaryINDArrayTD, unaryCD, wordVectorD, leftDerivative.mul(leftDeltaDown)); backpropDerivativesAndError( tree.children().get(1), binaryTD, binaryCD, binaryINDArrayTD, unaryCD, wordVectorD, rightDerivative.mul(rightDeltaDown)); } }
public INDArray getBinaryINDArray(String left, String right) { left = basicCategory(left); right = basicCategory(right); return binaryTensors.get(left, right); }
public INDArray getBinaryTransform(String left, String right) { left = basicCategory(left); right = basicCategory(right); return binaryTransform.get(left, right); }