示例#1
0
文件: LVQ.java 项目: triguero/Keel3.0
  private void normalizarTest() {

    int i, j, cont = 0, k;
    Instance temp;
    boolean hecho;
    double caja[];
    StringTokenizer tokens;
    boolean nulls[];

    /* Check if dataset corresponding with a classification problem */

    if (Attributes.getOutputNumAttributes() < 1) {
      System.err.println(
          "This dataset haven´t outputs, so it not corresponding to a classification problem.");
      System.exit(-1);
    } else if (Attributes.getOutputNumAttributes() > 1) {
      System.err.println("This dataset have more of one output.");
      System.exit(-1);
    }

    if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) {
      System.err.println(
          "This dataset have an input attribute with floating values, so it not corresponding to a classification problem.");
      System.exit(-1);
    }

    datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()];
    clasesTest = new int[test.getNumInstances()];
    caja = new double[1];

    for (i = 0; i < test.getNumInstances(); i++) {
      temp = test.getInstance(i);
      nulls = temp.getInputMissingValues();
      datosTest[i] = test.getInstance(i).getAllInputValues();
      for (j = 0; j < nulls.length; j++) if (nulls[j]) datosTest[i][j] = 0.0;
      caja = test.getInstance(i).getAllOutputValues();
      clasesTest[i] = (int) caja[0];
      for (k = 0; k < datosTest[i].length; k++) {
        if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) {
          datosTest[i][k] /= Attributes.getInputAttribute(k).getNominalValuesList().size() - 1;
        } else {
          datosTest[i][k] -= Attributes.getInputAttribute(k).getMinAttribute();
          datosTest[i][k] /=
              Attributes.getInputAttribute(k).getMaxAttribute()
                  - Attributes.getInputAttribute(k).getMinAttribute();
        }
      }
    }
  }
示例#2
0
  private void generateModel() {
    String salida = new String("");
    double max_auc = 0;
    ArrayList<String> solutions = this.getAllSolutions();
    models = new ArrayList<Farchd>();

    int nEjemplos = train.getnData();
    if (this.instances == this.MAJ) {
      nEjemplos = train.getMajority();
    }
    boolean[] variables = new boolean[train.getnInputs()];
    boolean[] ejemplos = new boolean[nEjemplos];
    this.weightsAUC = new double[solutions.size() / 2]; // Hay 2 soluciones FS e IS

    for (int i = 0, j = 0; i < solutions.size(); i += 2, j++) {
      int vars, ejs;
      vars = ejs = 0;
      variables = decode(solutions.get(i));
      ejemplos = decode(solutions.get(i + 1));
      for (int l = 0; l < variables.length; l++) {
        // variables[j] = solution[j];
        if (variables[l]) vars++;
      }
      for (int l = 0; l < ejemplos.length; l++) {
        if (ejemplos[l]) ejs++;
      }
      try {
        Farchd model = new Farchd(train, val, test, variables, ejemplos);

        /** ******** */
        // double fit = model.getAUCTr();
        double auc_tr = model.execute(true);
        double auc_tst = model.getAUCTst();
        if (auc_tr > max_auc) {
          max_auc = auc_tr;
          indexBest = j;
        }
        this.weightsAUC[j] = auc_tr;

        salida +=
            "Solution[" + j + "]:\t" + vars + "\t" + ejs + "\t" + auc_tr + "\t" + auc_tst + "\n";

        /** ******** */
        models.add(model);
      } catch (Exception e) {
        System.err.println("Liada maxima al generar modelo ");
        e.printStackTrace(System.err);
        System.exit(-1);
      }
    }
    System.out.print(salida);
    Files.writeFile(header + "_AUC.txt", salida);
  }
示例#3
0
文件: ABB.java 项目: Navieclipse/KEEL
  /**
   * Main method for ABB, that explores the search space by pruning nodes and checking their
   * inconsistency ratio.
   */
  private void runABB() {
    boolean[] root = startSolution();
    System.arraycopy(root, 0, features, 0, root.length);

    abb(root);

    /* checks if a subset satisfies the condition (more than 0 selected features) */
    if (features == null) {
      System.err.println("ERROR: It couldn't be possible to find any solution.");
      System.exit(0);
    }
  }
示例#4
0
文件: LVQ.java 项目: triguero/Keel3.0
  public LVQ(String ficheroScript) {
    super(ficheroScript);
    try {
      referencia = new InstanceSet();
      referencia.readSet(ficheroReferencia, false);

      /*Normalize the data*/
      normalizarReferencia();
    } catch (Exception e) {
      System.err.println(e);
      System.exit(1);
    }
  }
示例#5
0
文件: ABB.java 项目: Navieclipse/KEEL
    /**
     * Constructor of the Class Parametros
     *
     * @param nombreFileParametros is the pathname of input parameter file
     */
    Parametros(String nombreFileParametros) {

      try {
        int i;
        String fichero, linea, tok;
        StringTokenizer lineasFile, tokens;

        /* read the parameter file using Files class */
        fichero = Files.readFile(nombreFileParametros);
        fichero += "\n";

        /* remove all \r characters. it is neccesary for a correst use in Windows and UNIX  */
        fichero = fichero.replace('\r', ' ');

        /* extracts the differents tokens of the file */
        lineasFile = new StringTokenizer(fichero, "\n");

        i = 0;
        while (lineasFile.hasMoreTokens()) {

          linea = lineasFile.nextToken();
          i++;
          tokens = new StringTokenizer(linea, " ,\t");
          if (tokens.hasMoreTokens()) {

            tok = tokens.nextToken();
            if (tok.equalsIgnoreCase("algorithm")) nameAlgorithm = getParamString(tokens);
            else if (tok.equalsIgnoreCase("inputdata")) getInputFiles(tokens);
            else if (tok.equalsIgnoreCase("outputdata")) getOutputFiles(tokens);
            else if (tok.equalsIgnoreCase("seed")) seed = getParamLong(tokens);
            else throw new java.io.IOException("Syntax error on line " + i + ": [" + tok + "]\n");
          }
        }

      } catch (java.io.FileNotFoundException e) {
        System.err.println(e + "Parameter file");
      } catch (java.io.IOException e) {
        System.err.println(e + "Aborting program");
        System.exit(-1);
      }

      /** show the read parameter in the standard output */
      String contents = "-- Parameters echo --- \n";
      contents += "Algorithm name: " + nameAlgorithm + "\n";
      contents += "Input Train File: " + trainFileNameInput + "\n";
      contents += "Input Test File: " + testFileNameInput + "\n";
      contents += "Output Train File: " + trainFileNameOutput + "\n";
      contents += "Output Test File: " + testFileNameOutput + "\n";
      System.out.println(contents);
    }
示例#6
0
  // Write data matrix X to disk, in KEEL format
  private void write_results(String output) {
    // File OutputFile = new File(output_train_name.substring(1, output_train_name.length()-1));
    try {
      FileWriter file_write = new FileWriter(output);

      file_write.write(IS.getHeader());

      // now, print the normalized data
      file_write.write("@data\n");
      for (int i = 0; i < ndatos; i++) {
        file_write.write(X[i][0]);
        for (int j = 1; j < nvariables; j++) {
          file_write.write("," + X[i][j]);
        }
        file_write.write("\n");
      }
      file_write.close();
    } catch (IOException e) {
      System.out.println("IO exception = " + e);
      System.exit(-1);
    }
  }
示例#7
0
  /** Process the training and test files provided in the parameters file to the constructor. */
  public void process() {
    // declarations
    double[] outputs;
    double[] outputs2;
    Instance neighbor;
    double dist, mean;
    int actual;
    Randomize rnd = new Randomize();
    Instance ex;
    gCenter kmeans = null;
    int iterations = 0;
    double E;
    double prevE;
    int totalMissing = 0;
    boolean allMissing = true;

    rnd.setSeed(semilla);
    // PROCESS
    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(input_train_name, true);
      int in = 0;
      int out = 0;

      ndatos = IS.getNumInstances();
      nvariables = Attributes.getNumAttributes();
      nentradas = Attributes.getInputNumAttributes();
      nsalidas = Attributes.getOutputNumAttributes();

      X = new String[ndatos][nvariables]; // matrix with transformed data
      kmeans = new gCenter(K, ndatos, nvariables);

      timesSeen = new FreqList[nvariables];
      mostCommon = new String[nvariables];

      // first, we choose k 'means' randomly from all
      // instances
      totalMissing = 0;
      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);
        if (inst.existsAnyMissingValue()) totalMissing++;
      }
      if (totalMissing == ndatos) allMissing = true;
      else allMissing = false;
      for (int numMeans = 0; numMeans < K; numMeans++) {
        do {
          actual = (int) (ndatos * rnd.Rand());
          ex = IS.getInstance(actual);
        } while (ex.existsAnyMissingValue() && !allMissing);

        kmeans.copyCenter(ex, numMeans);
      }

      // now, iterate adjusting clusters' centers and
      // instances to them
      prevE = 0;
      iterations = 0;
      do {
        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);

          kmeans.setClusterOf(inst, i);
        }
        // set new centers
        kmeans.recalculateCenters(IS);
        // compute RMSE
        E = 0;
        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);

          E += kmeans.distance(inst, kmeans.getClusterOf(i));
        }
        iterations++;
        // System.out.println(iterations+"\t"+E);
        if (Math.abs(prevE - E) == 0) iterations = maxIter;
        else prevE = E;
      } while (E > minError && iterations < maxIter);
      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);

        in = 0;
        out = 0;

        for (int j = 0; j < nvariables; j++) {
          Attribute a = Attributes.getAttribute(j);

          direccion = a.getDirectionAttribute();
          tipo = a.getType();

          if (direccion == Attribute.INPUT) {
            if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) {
              X[i][j] = new String(String.valueOf(inst.getInputRealValues(in)));
            } else {
              if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in);
              else {
                actual = kmeans.getClusterOf(i);
                X[i][j] = new String(kmeans.valueAt(actual, j));
              }
            }
            in++;
          } else {
            if (direccion == Attribute.OUTPUT) {
              if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out)));
              } else {
                if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out);
                else {
                  actual = kmeans.getClusterOf(i);
                  X[i][j] = new String(kmeans.valueAt(actual, j));
                }
              }
              out++;
            }
          }
        }
      }
    } catch (Exception e) {
      System.out.println("Dataset exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
    write_results(output_train_name);
    /** ************************************************************************************ */
    // does a test file associated exist?
    if (input_train_name.compareTo(input_test_name) != 0) {
      try {

        // Load in memory a dataset that contains a classification problem
        IStest.readSet(input_test_name, false);
        int in = 0;
        int out = 0;

        ndatos = IStest.getNumInstances();
        nvariables = Attributes.getNumAttributes();
        nentradas = Attributes.getInputNumAttributes();
        nsalidas = Attributes.getOutputNumAttributes();

        for (int i = 0; i < ndatos; i++) {
          Instance inst = IStest.getInstance(i);

          in = 0;
          out = 0;

          for (int j = 0; j < nvariables; j++) {
            Attribute a = Attributes.getAttribute(j);

            direccion = a.getDirectionAttribute();
            tipo = a.getType();

            if (direccion == Attribute.INPUT) {
              if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) {
                X[i][j] = new String(String.valueOf(inst.getInputRealValues(in)));
              } else {
                if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in);
                else {
                  actual = kmeans.getClusterOf(i);
                  X[i][j] = new String(kmeans.valueAt(actual, j));
                }
              }
              in++;
            } else {
              if (direccion == Attribute.OUTPUT) {
                if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                  X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out)));
                } else {
                  if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out);
                  else {
                    actual = kmeans.getClusterOf(i);
                    X[i][j] = new String(kmeans.valueAt(actual, j));
                  }
                }
                out++;
              }
            }
          }
        }
      } catch (Exception e) {
        System.out.println("Dataset exception = " + e);
        e.printStackTrace();
        System.exit(-1);
      }
      write_results(output_test_name);
    }
  }
示例#8
0
  // Read the pattern file, and parse data into strings
  private void config_read(String fileParam) {
    File inputFile = new File(fileParam);

    if (inputFile == null || !inputFile.exists()) {
      System.out.println("parameter " + fileParam + " file doesn't exists!");
      System.exit(-1);
    }
    // begin the configuration read from file
    try {
      FileReader file_reader = new FileReader(inputFile);
      BufferedReader buf_reader = new BufferedReader(file_reader);
      // FileWriter file_write = new FileWriter(outputFile);

      String line;

      do {
        line = buf_reader.readLine();
      } while (line.length() == 0); // avoid empty lines for processing -> produce exec failure
      String out[] = line.split("algorithm = ");
      // alg_name = new String(out[1]); //catch the algorithm name
      // input & output filenames
      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("inputData = ");
      out = out[1].split("\\s\"");
      input_train_name = new String(out[0].substring(1, out[0].length() - 1));
      input_test_name = new String(out[1].substring(0, out[1].length() - 1));
      if (input_test_name.charAt(input_test_name.length() - 1) == '"')
        input_test_name = input_test_name.substring(0, input_test_name.length() - 1);

      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("outputData = ");
      out = out[1].split("\\s\"");
      output_train_name = new String(out[0].substring(1, out[0].length() - 1));
      output_test_name = new String(out[1].substring(0, out[1].length() - 1));
      if (output_test_name.charAt(output_test_name.length() - 1) == '"')
        output_test_name = output_test_name.substring(0, output_test_name.length() - 1);

      // parameters
      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("seed = ");
      semilla = (new Long(out[1])).longValue(); // parse the string into a integer

      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("k = ");
      K = (new Integer(out[1])).intValue(); // parse the string into a integer

      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("error = ");
      minError = (new Double(out[1])).doubleValue(); // parse the string into a double

      do {
        line = buf_reader.readLine();
      } while (line.length() == 0);
      out = line.split("iterations = ");
      maxIter = (new Integer(out[1])).intValue(); // parse the string into a double

      file_reader.close();

    } catch (IOException e) {
      System.out.println("IO exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
  }