/** * Computes the euclidean distance between a neuron and a vector * * @param v A vector * @return A double with the euclidean distance */ public double euclideaDist(double[] v) { int i; double aux = 0; for (i = 0; i < nInput; i++) aux += (v[i] - centre[i]) * (v[i] - centre[i]); return (Math.sqrt(aux)); }
/** * This private method computes the distance between an example in the dataset and a cluster * centroid. The distance is measure as the square root of the sum of the squares of the * differences between the example and the cetroid for all the dimensions. * * @param a The example in the dataset * @param b The culster centroid * @return The distance between a and b as a double precision float value. */ private static double distance(double a[], double b[]) { // Euclid distance between two patterns double d = 0; for (int i = 0; i < a.length; i++) d += (a[i] - b[i]) * (a[i] - b[i]); return (double) Math.sqrt(d); }
/** * Fisher distribution * * @param f Fisher value * @param n1 N1 value * @param n2 N2 value * @return P-value associated */ private static double FishF(double f, int n1, int n2) { double x = n2 / (n1 * f + n2); if ((n1 % 2) == 0) { return StatCom(1 - x, n2, n1 + n2 - 4, n2 - 2) * Math.pow(x, n2 / 2.0); } if ((n2 % 2) == 0) { return 1 - StatCom(x, n1, n1 + n2 - 4, n1 - 2) * Math.pow(1 - x, n1 / 2.0); } double th = Math.atan(Math.sqrt(n1 * f / (1.0 * n2))); double a = th / (Math.PI / 2.0); double sth = Math.sin(th); double cth = Math.cos(th); if (n2 > 1) { a = a + sth * cth * StatCom(cth * cth, 2, n2 - 3, -1) / (Math.PI / 2.0); } if (n1 == 1) { return 1 - a; } double c = 4 * StatCom(sth * sth, n2 + 1, n1 + n2 - 4, n2 - 2) * sth * Math.pow(cth, n2) / Math.PI; if (n2 == 1) { return 1 - a + c / 2.0; } int k = 2; while (k <= (n2 - 1) / 2.0) { c = c * k / (k - .5); k = k + 1; } return 1 - a + c; }
/** * Chi square distribution * * @param x Chi^2 value * @param n Degrees of freedom * @return P-value associated */ private static double ChiSq(double x, int n) { if (n == 1 & x > 1000) { return 0; } if (x > 1000 | n > 1000) { double q = ChiSq((x - n) * (x - n) / (2 * n), 1) / 2; if (x > n) { return q; } { return 1 - q; } } double p = Math.exp(-0.5 * x); if ((n % 2) == 1) { p = p * Math.sqrt(2 * x / Math.PI); } double k = n; while (k >= 2) { p = p * x / k; k = k - 2; } double t = p; double a = n; while (t > 0.0000000001 * p) { a = a + 2; t = t * x / a; p = p + t; } return 1 - p; }
private double computeAdjustedResidual(int data[][], int classData[], Rule regla, int clase) { double suma = 0; int i; for (i = 0; i < regla.getRule().length; i++) { suma += computeStandarizedResidual(data, classData, regla.getiCondition(i), clase) / Math.sqrt( computeMaximumLikelohoodEstimate(data, classData, regla.getiCondition(i), clase)); } return suma; }
/** * This method runs the multiple comparison tests * * @param code A value to codify which post-hoc methods apply * @param results Array with the results of the methods * @param algorithmName Array with the name of the methods employed * @return A string with the contents of the test in LaTeX format */ private static String runMultiple(double[][] results, String algorithmName[]) { int i, j, k; int posicion; double mean[][]; MultiplePair orden[][]; MultiplePair rank[][]; boolean encontrado; int ig; double sum; boolean visto[]; Vector<Integer> porVisitar; double Rj[]; double friedman; double sumatoria = 0; double termino1, termino2, termino3; double iman; boolean vistos[]; int pos, tmp, counter; String cad; double maxVal; double Pi[]; double ALPHAiHolm[]; double ALPHAiShaffer[]; String ordenAlgoritmos[]; double ordenRankings[]; int order[]; double adjustedP[][]; double SE; boolean parar; Vector<Integer> indices = new Vector<Integer>(); Vector<Vector<Relation>> exhaustiveI = new Vector<Vector<Relation>>(); boolean[][] cuadro; double minPi, tmpPi, maxAPi, tmpAPi; Relation[] parejitas; Vector<Integer> T; int Tarray[]; DecimalFormat nf4 = (DecimalFormat) DecimalFormat.getInstance(); nf4.setMaximumFractionDigits(4); nf4.setMinimumFractionDigits(0); DecimalFormatSymbols dfs = nf4.getDecimalFormatSymbols(); dfs.setDecimalSeparator('.'); nf4.setDecimalFormatSymbols(dfs); DecimalFormat nf6 = (DecimalFormat) DecimalFormat.getInstance(); nf6.setMaximumFractionDigits(6); nf6.setMinimumFractionDigits(0); nf6.setDecimalFormatSymbols(dfs); String out = ""; int nDatasets = Configuration.getNDatasets(); Iman = Configuration.isIman(); Nemenyi = Configuration.isNemenyi(); Bonferroni = Configuration.isBonferroni(); Holm = Configuration.isHolm(); Hoch = Configuration.isHochberg(); Hommel = Configuration.isHommel(); Scha = Configuration.isShaffer(); Berg = Configuration.isBergman(); mean = new double[nDatasets][algorithmName.length]; // Maximize performance if (Configuration.getObjective() == 1) { /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] = results[j][i]; } } } // Minimize performance else { double maxValue = Double.MIN_VALUE; /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { if (results[j][i] > maxValue) { maxValue = results[j][i]; } mean[i][j] = (-1.0 * results[j][i]); } } for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] += maxValue; } } } /*We use the pareja structure to compute and order rankings*/ orden = new MultiplePair[nDatasets][algorithmName.length]; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { orden[i][j] = new MultiplePair(j, mean[i][j]); } Arrays.sort(orden[i]); } /*building of the rankings table per algorithms and data sets*/ rank = new MultiplePair[nDatasets][algorithmName.length]; posicion = 0; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { encontrado = false; for (k = 0; k < algorithmName.length && !encontrado; k++) { if (orden[i][k].indice == j) { encontrado = true; posicion = k + 1; } } rank[i][j] = new MultiplePair(posicion, orden[i][posicion - 1].valor); } } /*In the case of having the same performance, the rankings are equal*/ for (i = 0; i < nDatasets; i++) { visto = new boolean[algorithmName.length]; porVisitar = new Vector<Integer>(); Arrays.fill(visto, false); for (j = 0; j < algorithmName.length; j++) { porVisitar.removeAllElements(); sum = rank[i][j].indice; visto[j] = true; ig = 1; for (k = j + 1; k < algorithmName.length; k++) { if (rank[i][j].valor == rank[i][k].valor && !visto[k]) { sum += rank[i][k].indice; ig++; porVisitar.add(new Integer(k)); visto[k] = true; } } sum /= (double) ig; rank[i][j].indice = sum; for (k = 0; k < porVisitar.size(); k++) { rank[i][((Integer) porVisitar.elementAt(k)).intValue()].indice = sum; } } } /*compute the average ranking for each algorithm*/ Rj = new double[algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Rj[i] = 0; for (j = 0; j < nDatasets; j++) { Rj[i] += rank[j][i].indice / ((double) nDatasets); } } /*Print the average ranking per algorithm*/ out += "\n\nAverage ranks obtained by applying the Friedman procedure\n\n"; out += "\\begin{table}[!htp]\n" + "\\centering\n" + "\\begin{tabular}{|c|c|}\\hline\n" + "Algorithm&Ranking\\\\\\hline\n"; for (i = 0; i < algorithmName.length; i++) { out += (String) algorithmName[i] + " & " + nf4.format(Rj[i]) + "\\\\\n"; } out += "\\hline\n\\end{tabular}\n\\caption{Average Rankings of the algorithms}\n\\end{table}"; /*Compute the Friedman statistic*/ termino1 = (12 * (double) nDatasets) / ((double) algorithmName.length * ((double) algorithmName.length + 1)); termino2 = (double) algorithmName.length * ((double) algorithmName.length + 1) * ((double) algorithmName.length + 1) / (4.0); for (i = 0; i < algorithmName.length; i++) { sumatoria += Rj[i] * Rj[i]; } friedman = (sumatoria - termino2) * termino1; out += "\n\nFriedman statistic considering reduction performance (distributed according to chi-square with " + (algorithmName.length - 1) + " degrees of freedom: " + nf6.format(friedman) + ".\n\n"; double pFriedman; pFriedman = ChiSq(friedman, (algorithmName.length - 1)); System.out.print("P-value computed by Friedman Test: " + pFriedman + ".\\newline\n\n"); /*Compute the Iman-Davenport statistic*/ if (Iman) { iman = ((nDatasets - 1) * friedman) / (nDatasets * (algorithmName.length - 1) - friedman); out += "Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with " + (algorithmName.length - 1) + " and " + (algorithmName.length - 1) * (nDatasets - 1) + " degrees of freedom: " + nf6.format(iman) + ".\n\n"; double pIman; pIman = FishF(iman, (algorithmName.length - 1), (algorithmName.length - 1) * (nDatasets - 1)); System.out.print("P-value computed by Iman and Daveport Test: " + pIman + ".\\newline\n\n"); } termino3 = Math.sqrt( (double) algorithmName.length * ((double) algorithmName.length + 1) / (6.0 * (double) nDatasets)); out += "\n\n\\pagebreak\n\n"; /** ********** NxN COMPARISON ************* */ out += "\\section{Post hoc comparisons}"; out += "\n\nResults achieved on post hoc comparisons for $\\alpha = 0.05$, $\\alpha = 0.10$ and adjusted p-values.\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.05*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; parejitas = new Relation[(int) combinatoria(2, algorithmName.length)]; T = new Vector<Integer>(); T = trueHShaffer(algorithmName.length); Tarray = new int[T.size()]; for (i = 0; i < T.size(); i++) { Tarray[i] = ((Integer) T.elementAt(i)).intValue(); } Arrays.sort(Tarray); SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; parejitas[k] = new Relation(i, j); } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.05 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.05 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } out += "\\subsection{P-values for $\\alpha=0.05$}\n\n"; int count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.05$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.05 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > (0.05 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size()))) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; out += "\\subsection{P-values for $\\alpha=0.10$}\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.10*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.1 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.1 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.10$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.10 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { indices.removeAllElements(); for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > 0.1 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size())) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; /** ********** ADJUSTED P-VALUES NxN COMPARISON ************* */ out += "\\subsection{Adjusted p-values}\n\n"; adjustedP = new double[Pi.length][4]; pos = 0; tmp = Tarray.length - 1; for (i = 0; i < adjustedP.length; i++) { adjustedP[i][0] = Pi[i] * (double) (adjustedP.length); adjustedP[i][1] = Pi[i] * (double) (adjustedP.length - i); adjustedP[i][2] = Pi[i] * ((double) adjustedP.length - (double) Math.max(pos, i)); if (i == pos) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } if (algorithmName.length <= MAX_ALGORITHMS) { maxAPi = Double.MIN_VALUE; minPi = Double.MAX_VALUE; for (j = 0; j < exhaustiveI.size(); j++) { if (exhaustiveI.elementAt(j).toString().contains(parejitas[order[i]].toString())) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .j]) / SE); for (k = 1; k < ((Vector<Relation>) exhaustiveI.elementAt(j)).size(); k++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } tmpAPi = minPi * (double) (((Vector<Relation>) exhaustiveI.elementAt(j)).size()); if (tmpAPi > maxAPi) { maxAPi = tmpAPi; } } } adjustedP[i][3] = maxAPi; } } for (i = 1; i < adjustedP.length; i++) { if (adjustedP[i][1] < adjustedP[i - 1][1]) adjustedP[i][1] = adjustedP[i - 1][1]; if (adjustedP[i][2] < adjustedP[i - 1][2]) adjustedP[i][2] = adjustedP[i - 1][2]; if (adjustedP[i][3] < adjustedP[i - 1][3]) adjustedP[i][3] = adjustedP[i - 1][3]; } count = 3; if (Nemenyi) { count++; } if (Holm) { count++; } if (Scha) { count++; } if (Berg) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "i&hypothesis&unadjusted $p$"; if (Nemenyi) { out += "&$p_{Neme}$"; } if (Holm) { out += "&$p_{Holm}$"; } if (Scha) { out += "&$p_{Shaf}$"; } if (Berg) { out += "&$p_{Berg}$"; } out += "\\\\\n\\hline"; for (i = 0; i < Pi.length; i++) { out += (i + 1) + "&" + algorithmName[parejitas[order[i]].i] + " vs ." + algorithmName[parejitas[order[i]].j] + "&" + nf6.format(Pi[i]); if (Nemenyi) { out += "&" + nf6.format(adjustedP[i][0]); } if (Holm) { out += "&" + nf6.format(adjustedP[i][1]); } if (Scha) { out += "&" + nf6.format(adjustedP[i][2]); } if (Berg) { out += "&" + nf6.format(adjustedP[i][3]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{Adjusted $p$-values}\n" + "\\end{table}\n\n"; out += "\\end{landscape}\n\\end{document}"; return out; } // end-method
private double computeStandarizedResidual( int data[][], int classData[], Condition cond, int clase) { double tmp = computeEAipAjq(data, classData, cond, clase); return (computeCountAipAjq(data, classData, cond, clase) - tmp) / Math.sqrt(tmp); }