// Signs the first input of the transaction which must spend the multisig contract.
 private void signMultisigInput(
     Transaction tx, Transaction.SigHash hashType, boolean anyoneCanPay) {
   TransactionSignature signature =
       tx.calculateSignature(0, serverKey, multisigScript, hashType, anyoneCanPay);
   byte[] mySig = signature.encodeToBitcoin();
   Script scriptSig =
       ScriptBuilder.createMultiSigInputScriptBytes(ImmutableList.of(bestValueSignature, mySig));
   tx.getInput(0).setScriptSig(scriptSig);
 }
  private WalletTransaction connectTransactionOutputs(
      org.bitcoinj.wallet.Protos.Transaction txProto) throws UnreadableWalletException {
    Transaction tx = txMap.get(txProto.getHash());
    final WalletTransaction.Pool pool;
    switch (txProto.getPool()) {
      case DEAD:
        pool = WalletTransaction.Pool.DEAD;
        break;
      case PENDING:
        pool = WalletTransaction.Pool.PENDING;
        break;
      case SPENT:
        pool = WalletTransaction.Pool.SPENT;
        break;
      case UNSPENT:
        pool = WalletTransaction.Pool.UNSPENT;
        break;
        // Upgrade old wallets: inactive pool has been merged with the pending pool.
        // Remove this some time after 0.9 is old and everyone has upgraded.
        // There should not be any spent outputs in this tx as old wallets would not allow them to
        // be spent
        // in this state.
      case INACTIVE:
      case PENDING_INACTIVE:
        pool = WalletTransaction.Pool.PENDING;
        break;
      default:
        throw new UnreadableWalletException("Unknown transaction pool: " + txProto.getPool());
    }
    for (int i = 0; i < tx.getOutputs().size(); i++) {
      TransactionOutput output = tx.getOutputs().get(i);
      final Protos.TransactionOutput transactionOutput = txProto.getTransactionOutput(i);
      if (transactionOutput.hasSpentByTransactionHash()) {
        final ByteString spentByTransactionHash = transactionOutput.getSpentByTransactionHash();
        Transaction spendingTx = txMap.get(spentByTransactionHash);
        if (spendingTx == null) {
          throw new UnreadableWalletException(
              String.format(
                  "Could not connect %s to %s",
                  tx.getHashAsString(), byteStringToHash(spentByTransactionHash)));
        }
        final int spendingIndex = transactionOutput.getSpentByTransactionIndex();
        TransactionInput input = checkNotNull(spendingTx.getInput(spendingIndex));
        input.connect(output);
      }
    }

    if (txProto.hasConfidence()) {
      Protos.TransactionConfidence confidenceProto = txProto.getConfidence();
      TransactionConfidence confidence = tx.getConfidence();
      readConfidence(tx, confidenceProto, confidence);
    }

    return new WalletTransaction(pool, tx);
  }
  /**
   * Called when the client provides the refund transaction. The refund transaction must have one
   * input from the multisig contract (that we don't have yet) and one output that the client
   * creates to themselves. This object will later be modified when we start getting paid.
   *
   * @param refundTx The refund transaction, this object will be mutated when payment is
   *     incremented.
   * @param clientMultiSigPubKey The client's pubkey which is required for the multisig output
   * @return Our signature that makes the refund transaction valid
   * @throws VerificationException If the transaction isnt valid or did not meet the requirements of
   *     a refund transaction.
   */
  public synchronized byte[] provideRefundTransaction(
      Transaction refundTx, byte[] clientMultiSigPubKey) throws VerificationException {
    checkNotNull(refundTx);
    checkNotNull(clientMultiSigPubKey);
    checkState(state == State.WAITING_FOR_REFUND_TRANSACTION);
    log.info("Provided with refund transaction: {}", refundTx);
    // Do a few very basic syntax sanity checks.
    refundTx.verify();
    // Verify that the refund transaction has a single input (that we can fill to sign the multisig
    // output).
    if (refundTx.getInputs().size() != 1)
      throw new VerificationException("Refund transaction does not have exactly one input");
    // Verify that the refund transaction has a time lock on it and a sequence number of zero.
    if (refundTx.getInput(0).getSequenceNumber() != 0)
      throw new VerificationException("Refund transaction's input's sequence number is non-0");
    if (refundTx.getLockTime() < minExpireTime)
      throw new VerificationException("Refund transaction has a lock time too soon");
    // Verify the transaction has one output (we don't care about its contents, its up to the
    // client)
    // Note that because we sign with SIGHASH_NONE|SIGHASH_ANYOENCANPAY the client can later add
    // more outputs and
    // inputs, but we will need only one output later to create the paying transactions
    if (refundTx.getOutputs().size() != 1)
      throw new VerificationException("Refund transaction does not have exactly one output");

    refundTransactionUnlockTimeSecs = refundTx.getLockTime();

    // Sign the refund tx with the scriptPubKey and return the signature. We don't have the spending
    // transaction
    // so do the steps individually.
    clientKey = ECKey.fromPublicOnly(clientMultiSigPubKey);
    Script multisigPubKey =
        ScriptBuilder.createMultiSigOutputScript(2, ImmutableList.of(clientKey, serverKey));
    // We are really only signing the fact that the transaction has a proper lock time and don't
    // care about anything
    // else, so we sign SIGHASH_NONE and SIGHASH_ANYONECANPAY.
    TransactionSignature sig =
        refundTx.calculateSignature(0, serverKey, multisigPubKey, Transaction.SigHash.NONE, true);
    log.info("Signed refund transaction.");
    this.clientOutput = refundTx.getOutput(0);
    state = State.WAITING_FOR_MULTISIG_CONTRACT;
    return sig.encodeToBitcoin();
  }
  /**
   * This is required for signatures which use a sigHashType which cannot be represented using
   * SigHash and anyoneCanPay See transaction
   * c99c49da4c38af669dea436d3e73780dfdb6c1ecf9958baa52960e8baee30e73, which has sigHashType 0
   */
  public static synchronized byte[] serializeForSignature(
      Transaction spendingTx, int inputIndex, byte[] connectedScript, byte sigHashType) {
    NetworkParameters params = TestNet3Params.get();
    // The SIGHASH flags are used in the design of contracts, please see this page for a further
    // understanding of
    // the purposes of the code in this method:
    //
    //   https://en.bitcoin.it/wiki/Contracts

    try {

      Transaction tx = new Transaction(params, spendingTx.bitcoinSerialize());
      // Store all the input scripts and clear them in preparation for signing. If we're signing a
      // fresh
      // transaction that step isn't very helpful, but it doesn't add much cost relative to the
      // actual
      // EC math so we'll do it anyway.
      //
      // Also store the input sequence numbers in case we are clearing them with SigHash.NONE/SINGLE

      byte[][] inputScripts = new byte[tx.getInputs().size()][];
      long[] inputSequenceNumbers = new long[tx.getInputs().size()];
      for (int i = 0; i < tx.getInputs().size(); i++) {
        inputScripts[i] = tx.getInputs().get(i).getScriptBytes();
        inputSequenceNumbers[i] = tx.getInputs().get(i).getSequenceNumber();
        tx.getInput(i).setScriptSig(new Script(new byte[0]));
      }

      // This step has no purpose beyond being synchronized with the reference clients bugs.
      // OP_CODESEPARATOR
      // is a legacy holdover from a previous, broken design of executing scripts that shipped in
      // Bitcoin 0.1.
      // It was seriously flawed and would have let anyone take anyone elses money. Later versions
      // switched to
      // the design we use today where scripts are executed independently but share a stack. This
      // left the
      // OP_CODESEPARATOR instruction having no purpose as it was only meant to be used internally,
      // not actually
      // ever put into scripts. Deleting OP_CODESEPARATOR is a step that should never be required
      // but if we don't
      // do it, we could split off the main chain.

      connectedScript =
          Script.removeAllInstancesOfOp(connectedScript, ScriptOpCodes.OP_CODESEPARATOR);
      // Set the input to the script of its output. Satoshi does this but the step has no obvious
      // purpose as
      // the signature covers the hash of the prevout transaction which obviously includes the
      // output script
      // already. Perhaps it felt safer to him in some way, or is another leftover from how the code
      // was written.
      TransactionInput input = tx.getInputs().get(inputIndex);
      input.setScriptSig(new Script(connectedScript));
      List<TransactionOutput> outputs = tx.getOutputs();

      if ((sigHashType & 0x1f) == (Transaction.SigHash.NONE.ordinal() + 1)) {
        // SIGHASH_NONE means no outputs are signed at all - the signature is effectively for a
        // "blank cheque".
        // this.outputs = new ArrayList<TransactionOutput>(0);
        tx.clearOutputs();
        // The signature isn't broken by new versions of the transaction issued by other parties.
        for (int i = 0; i < tx.getInputs().size(); i++)
          if (i != inputIndex) tx.getInputs().get(i).setSequenceNumber(0);
      } else if ((sigHashType & 0x1f) == (Transaction.SigHash.SINGLE.ordinal() + 1)) {
        // SIGHASH_SINGLE means only sign the output at the same index as the input (ie, my output).
        if (inputIndex >= tx.getOutputs().size()) {
          // The input index is beyond the number of outputs, it's a buggy signature made by a
          // broken
          // Bitcoin implementation. The reference client also contains a bug in handling this case:
          // any transaction output that is signed in this case will result in both the signed
          // output
          // and any future outputs to this public key being steal-able by anyone who has
          // the resulting signature and the public key (both of which are part of the signed tx
          // input).
          // Put the transaction back to how we found it.
          //
          // TODO: Only allow this to happen if we are checking a signature, not signing a
          // transactions
          for (int i = 0; i < tx.getInputs().size(); i++) {
            // tx.getInputs().get(i).setScriptSig(inputScripts[i]);
            /*                        tx.getInputs().get(i).setScriptSig(ScriptBuilder.createMultiSigInputScriptBytes(
            Arrays.asList(inputScripts[i])));*/
            tx.getInput(i).setScriptSig(new Script(inputScripts[i]));
            tx.getInputs().get(i).setSequenceNumber(inputSequenceNumbers[i]);
          }
          // this.outputs = outputs;

          // Satoshis bug is that SignatureHash was supposed to return a hash and on this codepath
          // it
          // actually returns the constant "1" to indicate an error, which is never checked for.
          // Oops.
          return Utils.HEX.decode(
              "0100000000000000000000000000000000000000000000000000000000000000");
        }

        // In SIGHASH_SINGLE the outputs after the matching input index are deleted, and the outputs
        // before
        // that position are "nulled out". Unintuitively, the value in a "null" transaction is set
        // to -1.
        /*                this.outputs = new ArrayList<TransactionOutput>(this.outputs.subList(0, inputIndex + 1));
        for (int i = 0; i < inputIndex; i++)
            this.outputs.set(i, new TransactionOutput(params, this, Coin.NEGATIVE_SATOSHI, new byte[] {}));
        // The signature isn't broken by new versions of the transaction issued by other parties.
        for (int i = 0; i < inputs.size(); i++)
            if (i != inputIndex)
                inputs.get(i).setSequenceNumber(0);*/
        // In SIGHASH_SINGLE the outputs after the matching input index are deleted, and the outputs
        // before
        // that position are "nulled out". Unintuitively, the value in a "null" transaction is set
        // to -1.
        // tx.outputs = new ArrayList<TransactionOutput>(tx.getOutputs().subList(0, inputIndex +
        // 1));
        tx.clearOutputs();
        for (int i = 0; i <= inputIndex; i++)
          if (i == inputIndex) {
            // need to make sure the output at inputIndex stays the same
            tx.addOutput(spendingTx.getOutput(inputIndex));
          } else {
            // this.outputs.set(i, new TransactionOutput(params, this, Coin.NEGATIVE_SATOSHI, new
            // byte[] {}));
            tx.addOutput(new TransactionOutput(params, tx, Coin.NEGATIVE_SATOSHI, new byte[] {}));
          }

        // The signature isn't broken by new versions of the transaction issued by other parties.
        for (int i = 0; i < tx.getInputs().size(); i++)
          if (i != inputIndex) tx.getInputs().get(i).setSequenceNumber(0);
      }

      List<TransactionInput> inputs = tx.getInputs();
      if ((sigHashType & (byte) 0x80) == 0x80) {
        // SIGHASH_ANYONECANPAY means the signature in the input is not broken by
        // changes/additions/removals
        // of other inputs. For example, this is useful for building assurance contracts.
        tx.clearInputs();
        tx.getInputs().add(input);
      }

      ByteArrayOutputStream bos = new UnsafeByteArrayOutputStream(256);
      tx.bitcoinSerialize(bos);
      // We also have to write a hash type (sigHashType is actually an unsigned char)
      uint32ToByteStreamLE(0x000000ff & sigHashType, bos);
      // Note that this is NOT reversed to ensure it will be signed correctly. If it were to be
      // printed out
      // however then we would expect that it is IS reversed.
      byte[] txSignatureBytes = bos.toByteArray();
      bos.close();

      // Put the transaction back to how we found it.
      // tx.inputs = inputs;
      tx.clearInputs();
      for (int i = 0; i < inputs.size(); i++) {
        tx.addInput(inputs.get(i));
      }
      for (int i = 0; i < inputs.size(); i++) {
        inputs.get(i).setScriptSig(new Script(inputScripts[i]));
        inputs.get(i).setSequenceNumber(inputSequenceNumbers[i]);
      }
      // this.outputs = outputs;
      tx.clearOutputs();
      for (int i = 0; i < outputs.size(); i++) {
        tx.addOutput(outputs.get(i));
      }
      return txSignatureBytes;
    } catch (IOException e) {
      throw new RuntimeException(e); // Cannot happen.
    }
  }
  /**
   * function that updates debit/credit/balance/price in fiat and Transaction History table
   *
   * @param services
   */
  private void updateWalletsSummary(List<WalletService> services) {
    Coin totalDebit = Coin.ZERO;
    Coin totalCredit = Coin.ZERO;
    Coin totalBalance = Coin.ZERO;
    double priceInFiat = 0.00d;
    String confidence = "";
    // update debit/credit/balance and price in fiat
    List<TransactionWrapper> transactions = new ArrayList<>();
    for (WalletService service : services) {
      try {
        Wallet wallet = service.getWallet();
        totalBalance = totalBalance.add(wallet.getBalance());
        for (Transaction trx : wallet.getTransactionsByTime()) {
          if (trx.getConfidence().equals(TransactionConfidence.ConfidenceType.DEAD)) continue;
          Coin amount = trx.getValue(wallet);
          if (amount.isPositive()) {
            totalCredit = totalCredit.add(amount);
          } else {
            totalDebit = totalDebit.add(amount);
          }
          transactions.add(new TransactionWrapper(trx, wallet, amount));
        }
      } catch (Exception e) {
        logger.error("Unable to update wallet details");
      }
    }
    pnlDashboardStats.setTotalBalance(MonetaryFormat.BTC.noCode().format(totalBalance).toString());
    // pnlDashboardStats.setTotalDebit(MonetaryFormat.BTC.noCode().format(totalDebit).toString());
    // pnlDashboardStats.setTotalCredit(MonetaryFormat.BTC.noCode().format(totalCredit).toString());
    priceInFiat = Double.valueOf(MonetaryFormat.BTC.noCode().format(totalBalance).toString());
    priceInFiat *= BitcoinCurrencyRateApi.get().getCurrentRateValue();
    pnlDashboardStats.setPriceInFiat(
        String.format("%.2f", priceInFiat), "", ConfigManager.config().getSelectedCurrency());
    pnlDashboardStats.setExchangeRate(
        ConfigManager.config().getSelectedCurrency(),
        String.format("%.2f", BitcoinCurrencyRateApi.get().getCurrentRateValue()));
    Collections.sort(
        transactions,
        new Comparator<TransactionWrapper>() {
          @Override
          public int compare(TransactionWrapper o1, TransactionWrapper o2) {
            return o2.getTransaction()
                .getUpdateTime()
                .compareTo(o1.getTransaction().getUpdateTime());
          }
        });
    // update Transaction History table
    DefaultTableModel model = (DefaultTableModel) tblTransactions.getModel();
    model.setRowCount(0);
    for (TransactionWrapper wrapper : transactions) {
      Transaction transaction = wrapper.getTransaction();
      if (transaction.getConfidence().getDepthInBlocks() > 6)
        confidence = "<html>6<sup>+</sup></html>";
      else confidence = transaction.getConfidence().getDepthInBlocks() + "";
      Coin amount = wrapper.getAmount();
      Coin fee = transaction.getFee();
      String amountString = MonetaryFormat.BTC.noCode().format(amount).toString();
      String feeString = fee != null ? MonetaryFormat.BTC.noCode().format(fee).toString() : "0.00";
      Address from = transaction.getInput(0).getFromAddress();
      Address to =
          transaction
              .getOutput(0)
              .getAddressFromP2PKHScript(wrapper.getWallet().getNetworkParameters());
      boolean credit = amount.isPositive();

      model.addRow(
          new Object[] {
            Utils.formatTransactionDate(transaction.getUpdateTime()),
            from,
            to,
            credit ? "Credit" : "Debit",
            amountString,
            feeString,
            "",
            confidence
          });
    }
    Coin balanceAfter = Coin.ZERO;
    for (int index = transactions.size() - 1; index >= 0; index--) {
      balanceAfter = balanceAfter.add(Coin.parseCoin((String) model.getValueAt(index, 4)));
      model.setValueAt(MonetaryFormat.BTC.noCode().format(balanceAfter).toString(), index, 6);
    }
  }