@Override public final Expr inline(final QueryContext ctx, final VarScope scp, final Var v, final Expr e) throws QueryException { final Value oldVal = ctx.value; try { ctx.value = root(ctx); final Expr rt = root == null ? null : root.inline(ctx, scp, v, e); if (rt != null) { setRoot(ctx, rt); ctx.value = oldVal; ctx.value = root(ctx); } boolean change = rt != null; for (int i = 0; i < steps.length; i++) { final Expr nw = steps[i].inline(ctx, scp, v, e); if (nw != null) { steps[i] = nw; change = true; } } return change ? optimize(ctx, scp) : null; } finally { ctx.value = oldVal; } }
@Override public final Expr compile(final QueryContext qc, final VarScope scp) throws QueryException { if (root != null) root = root.compile(qc, scp); // no steps if (steps.length == 0) return root == null ? new Context(info) : root; final Value init = qc.value, cv = initial(qc); final boolean doc = cv != null && cv.type == NodeType.DOC; qc.value = cv; try { final int sl = steps.length; for (int s = 0; s < sl; s++) { Expr e = steps[s]; // axis step: if input is a document, its type is temporarily generalized final boolean as = e instanceof Step; if (as && s == 0 && doc) cv.type = NodeType.NOD; e = e.compile(qc, scp); if (e.isEmpty()) return optPre(qc); steps[s] = e; // no axis step: invalidate context value if (!as) qc.value = null; } } finally { if (doc) cv.type = NodeType.DOC; qc.value = init; } // optimize path return optimize(qc, scp); }
/** * Converts descendant to child steps. * * @param qc query context * @param rt root value * @return original or new expression */ private Expr children(final QueryContext qc, final Value rt) { // skip if index does not exist or is out-dated, or if several namespaces occur in the input final Data data = rt.data(); if (data == null || !data.meta.uptodate || data.nspaces.globalNS() == null) return this; Path path = this; final int sl = steps.length; for (int s = 0; s < sl; s++) { // don't allow predicates in preceding location steps final Step prev = s > 0 ? axisStep(s - 1) : null; if (prev != null && prev.preds.length != 0) break; // ignore axes other than descendant, or numeric predicates final Step curr = axisStep(s); if (curr == null || curr.axis != DESC || curr.has(Flag.FCS)) continue; // check if child steps can be retrieved for current step ArrayList<PathNode> nodes = pathNodes(data, s); if (nodes == null) continue; // cache child steps final ArrayList<QNm> qnm = new ArrayList<>(); while (nodes.get(0).parent != null) { QNm nm = new QNm(data.elemNames.key(nodes.get(0).name)); // skip children with prefixes if (nm.hasPrefix()) return this; for (final PathNode p : nodes) { if (nodes.get(0).name != p.name) nm = null; } qnm.add(nm); nodes = PathSummary.parent(nodes); } qc.compInfo(OPTCHILD, steps[s]); // build new steps int ts = qnm.size(); final Expr[] stps = new Expr[ts + sl - s - 1]; for (int t = 0; t < ts; t++) { final Expr[] preds = t == ts - 1 ? ((Preds) steps[s]).preds : new Expr[0]; final QNm nm = qnm.get(ts - t - 1); final NameTest nt = nm == null ? new NameTest(false) : new NameTest(nm, Kind.NAME, false, null); stps[t] = Step.get(info, CHILD, nt, preds); } while (++s < sl) stps[ts++] = steps[s]; path = get(info, root, stps); break; } // check if all steps yield results; if not, return empty sequence final ArrayList<PathNode> nodes = pathNodes(qc); if (nodes != null && nodes.isEmpty()) { qc.compInfo(OPTPATH, path); return Empty.SEQ; } return path; }
@Override public final Expr compile(final QueryContext ctx, final VarScope scp) throws QueryException { if (root != null) setRoot(ctx, root.compile(ctx, scp)); final Value v = ctx.value; try { ctx.value = root(ctx); return compilePath(ctx, scp); } finally { ctx.value = v; } }
@Override public final Value value(final QueryContext qc) throws QueryException { final int es = exprs.length; final Value[] args = new Value[es]; for (int e = 0; e < es; ++e) args[e] = qc.value(exprs[e]); return toValue(eval(args, qc), qc, sc); }
/** * Optimizes descendant-or-self steps and static types. * * @param ctx query context */ void optSteps(final QueryContext ctx) { boolean opt = false; Expr[] st = steps; for (int l = 1; l < st.length; ++l) { if (!(st[l - 1] instanceof Step && st[l] instanceof Step)) continue; final Step prev = (Step) st[l - 1]; final Step curr = (Step) st[l]; if (!prev.simple(DESCORSELF, false)) continue; if (curr.axis == CHILD && !curr.has(Flag.FCS)) { // descendant-or-self::node()/child::X -> descendant::X final int sl = st.length; final Expr[] tmp = new Expr[sl - 1]; System.arraycopy(st, 0, tmp, 0, l - 1); System.arraycopy(st, l, tmp, l - 1, sl - l); st = tmp; curr.axis = DESC; opt = true; } else if (curr.axis == ATTR && !curr.has(Flag.FCS)) { // descendant-or-self::node()/@X -> descendant-or-self::*/@X prev.test = new NameTest(false); opt = true; } } if (opt) ctx.compInfo(OPTDESC); // set atomic type for single attribute steps to speedup predicate tests if (root == null && st.length == 1 && st[0] instanceof Step) { final Step curr = (Step) st[0]; if (curr.axis == ATTR && curr.test.mode == Mode.STD) curr.type = SeqType.NOD_ZO; } steps = st; }
/** * Sets a new root expression and eliminates a superfluous context item. * * @param ctx query context * @param rt root expression */ private void setRoot(final QueryContext ctx, final Expr rt) { root = rt; if (root instanceof Context) { ctx.compInfo(OPTREMCTX); root = null; } }
/** * Parses and returns an xquery expression. * * @param cmd referring command; if specified, the result must not be empty * @return path * @throws QueryException query exception */ private String xquery(final Cmd cmd) throws QueryException { consumeWS(); final StringBuilder sb = new StringBuilder(); if (!eoc()) { final QueryContext qc = new QueryContext(ctx); try { final QueryParser p = new QueryParser(parser.input, null, qc, null); p.pos = parser.pos; p.parseMain(); sb.append(parser.input.substring(parser.pos, p.pos)); parser.pos = p.pos; } finally { qc.close(); } } return finish(sb, cmd); }
/** * Returns a serializer for the given output stream. Optional output declarations within the query * will be included in the serializer instance. * * @param os output stream * @return serializer instance * @throws IOException query exception * @throws QueryException query exception */ public Serializer getSerializer(final OutputStream os) throws IOException, QueryException { compile(); try { return Serializer.get(os, qc.serParams()); } catch (final QueryIOException ex) { throw ex.getCause(); } }
/** * Returns all tokens of the query. * * @param qc query context * @return token list * @throws QueryException query exception */ private TokenList tokens(final QueryContext qc) throws QueryException { final TokenList tl = new TokenList(); final Iter ir = qc.iter(query); for (byte[] qu; (qu = nextToken(ir)) != null; ) { // skip empty tokens if not all results are needed if (qu.length != 0 || mode == FTMode.ALL || mode == FTMode.ALL_WORDS) tl.add(qu); } return tl; }
/** * Parses the query. * * @throws QueryException query exception */ public void parse() throws QueryException { if (parsed) return; try { qc.parseMain(query, null, sc); } finally { parsed = true; updating = qc.updating; } }
/** * Refreshes the view after a file has been saved. * * @param root root directory * @param ctx database context * @throws InterruptedException interruption */ void parse(final IOFile root, final Context ctx) throws InterruptedException { final long id = ++parseId; final HashSet<String> parsed = new HashSet<>(); final TreeMap<String, InputInfo> errs = new TreeMap<>(); // collect files to be parsed final ProjectCache pc = cache(root); final StringList mods = new StringList(), lmods = new StringList(); for (final String path : pc) { final IOFile file = new IOFile(path); if (file.hasSuffix(IO.XQSUFFIXES)) (file.hasSuffix(IO.XQMSUFFIX) ? lmods : mods).add(path); } mods.add(lmods); // parse modules for (final String path : mods) { if (id != parseId) throw new InterruptedException(); if (parsed.contains(path)) continue; final IOFile file = new IOFile(path); try (final TextInput ti = new TextInput(file)) { // parse query try (final QueryContext qc = new QueryContext(ctx)) { final String input = ti.cache().toString(); final boolean lib = QueryProcessor.isLibrary(input); qc.parse(input, lib, path, null); // parsing was successful: remember path parsed.add(path); for (final byte[] mod : qc.modParsed) parsed.add(Token.string(mod)); } catch (final QueryException ex) { // parsing failed: remember path final InputInfo ii = ex.info(); errs.put(path, ii); parsed.add(ii.path()); } } catch (final IOException ex) { // file may not be accessible Util.debug(ex); } } errors = errs; }
@Override public Expr optimize(final QueryContext ctx, final VarScope scp) throws QueryException { if (root instanceof Context) { ctx.compInfo(OPTREMCTX); root = null; } for (final Expr e : steps) { // check for empty steps if (e.isEmpty()) return optPre(null, ctx); } return this; }
/** * Merges expensive descendant-or-self::node() steps. * * @param qc query context * @return original or new expression */ private Expr mergeSteps(final QueryContext qc) { boolean opt = false; final int sl = steps.length; final ExprList stps = new ExprList(sl); for (int s = 0; s < sl; s++) { final Expr step = steps[s]; // check for simple descendants-or-self step with succeeding step if (s < sl - 1 && step instanceof Step) { final Step curr = (Step) step; if (curr.simple(DESCORSELF, false)) { // check succeeding step final Expr next = steps[s + 1]; // descendant-or-self::node()/child::X -> descendant::X if (simpleChild(next)) { ((Step) next).axis = DESC; opt = true; continue; } // descendant-or-self::node()/(X, Y) -> (descendant::X | descendant::Y) Expr e = mergeList(next); if (e != null) { steps[s + 1] = e; opt = true; continue; } // //(X, Y)[text()] -> (/descendant::X | /descendant::Y)[text()] if (next instanceof Filter && !next.has(Flag.FCS)) { final Filter f = (Filter) next; e = mergeList(f.root); if (e != null) { f.root = e; opt = true; continue; } } } } stps.add(step); } if (opt) { qc.compInfo(OPTDESC); return get(info, root, stps.finish()); } return this; }
/** * Returns an equivalent expression which accesses an index. If the expression cannot be * rewritten, the original expression is returned. * * <p>The following types of queries can be rewritten (in the examples, the equality comparison is * used, which will be rewritten to {@link ValueAccess} instances): * * <pre> * 1. A[text() = '...'] -> IA('...') * 2. A[. = '...'] -> IA('...', A) * 3. text()[. = '...'] -> IA('...') * 4. A[B = '...'] -> IA('...', B)/parent::A * 1. A[B/text() = '...'] -> IA('...')/parent::B/parent::A * 2. A[B/C = '...'] -> IA('...', C)/parent::B/parent::A * 7. A[@a = '...'] -> IA('...', @a)/parent::A * 8. @a[. = '...'] -> IA('...', @a)</pre> * * Queries of type 1, 3, 5 will not yield any results if the string to be compared is empty. * * @param qc query context * @param rt root value * @return original or new expression * @throws QueryException query exception */ private Expr index(final QueryContext qc, final Value rt) throws QueryException { // only rewrite paths with data reference final Data data = rt.data(); if (data == null) return this; // cache index access costs IndexInfo index = null; // cheapest predicate and step int iPred = 0, iStep = 0; // check if path can be converted to an index access final int sl = steps.length; for (int s = 0; s < sl; s++) { // only accept descendant steps without positional predicates final Step step = axisStep(s); if (step == null || !step.axis.down || step.has(Flag.FCS)) break; // check if path is iterable (i.e., will be duplicate-free) final boolean iter = pathNodes(data, s) != null; final IndexContext ictx = new IndexContext(data, iter); // choose cheapest index access final int pl = step.preds.length; for (int p = 0; p < pl; p++) { final IndexInfo ii = new IndexInfo(ictx, qc, step); if (!step.preds[p].indexAccessible(ii)) continue; if (ii.costs == 0) { // no results... qc.compInfo(OPTNOINDEX, this); return Empty.SEQ; } if (index == null || index.costs > ii.costs) { index = ii; iPred = p; iStep = s; } } } // skip rewriting if no index access is possible, or if it is too expensive if (index == null || index.costs > data.meta.size) return this; // rewrite for index access qc.compInfo(index.info); // replace expressions for index access final Step indexStep = index.step; // collect remaining predicates final int pl = indexStep.preds.length; final ExprList newPreds = new ExprList(pl - 1); for (int p = 0; p < pl; p++) { if (p != iPred) newPreds.add(indexStep.preds[p]); } // invert steps that occur before index step and add them as predicate final Test test = InvDocTest.get(rt); final ExprList invSteps = new ExprList(); if (test != Test.DOC || !data.meta.uptodate || predSteps(data, iStep)) { for (int s = iStep; s >= 0; s--) { final Axis ax = axisStep(s).axis.invert(); if (s == 0) { // add document test for collections and axes other than ancestors if (test != Test.DOC || ax != Axis.ANC && ax != Axis.ANCORSELF) invSteps.add(Step.get(info, ax, test)); } else { final Step prev = axisStep(s - 1); invSteps.add(Step.get(info, ax, prev.test, prev.preds)); } } } if (!invSteps.isEmpty()) newPreds.add(get(info, null, invSteps.finish())); // create resulting expression final ExprList resultSteps = new ExprList(); final Expr resultRoot; if (index.expr instanceof Path) { final Path p = (Path) index.expr; resultRoot = p.root; resultSteps.add(p.steps); } else { resultRoot = index.expr; } if (!newPreds.isEmpty()) { int ls = resultSteps.size() - 1; Step step; if (ls < 0 || !(resultSteps.get(ls) instanceof Step)) { // add at least one self axis step step = Step.get(info, Axis.SELF, Test.NOD); ls++; } else { step = (Step) resultSteps.get(ls); } // add remaining predicates to last step resultSteps.set(ls, step.addPreds(newPreds.finish())); } // add remaining steps for (int s = iStep + 1; s < sl; s++) resultSteps.add(steps[s]); return get(info, resultRoot, resultSteps.finish()); }
/** * This function is called by the GUI; use {@link #iter()} or {@link #value()} instead. Caches and * returns the result of the specified query. If all nodes are of the same database instance, the * returned value will be of type {@link DBNodes}. * * @param max maximum number of results to cache (negative: return all values) * @return result of query * @throws QueryException query exception */ public Value cache(final int max) throws QueryException { parse(); return qc.cache(max); }
/** * Returns a result value. * * @return result value * @throws QueryException query exception */ public Value value() throws QueryException { parse(); return qc.iter().value(); }
/** * Returns a result iterator. * * @return result iterator * @throws QueryException query exception */ public Iter iter() throws QueryException { parse(); return qc.iter(); }
/** * Compiles the query. * * @throws QueryException query exception */ public void compile() throws QueryException { parse(); qc.compile(); }
/** * Binds the context value. * * @param value XQuery value to be bound * @return self reference */ public QueryProcessor context(final Value value) { qc.context(value, sc); return this; }
/** * Returns a tree representation of the query plan. * * @return root node */ public FDoc plan() { return new FDoc().add(qc.plan()); }
/** * Returns query information. * * @return query information */ public String info() { return qc.info(); }
@Override public void databases(final LockResult lr) { qc.databases(lr); }
@Override public void close() { qc.close(); }
/** * Returns the number of performed updates after query execution, or {@code 0}. * * @return number of updates */ public int updates() { return updating ? qc.updates().size() : 0; }
/** * Evaluates the specified query and returns the result. * * @return result of query * @throws QueryException query exception */ public Result execute() throws QueryException { parse(); return qc.execute(); }
/** * Binds the HTTP context to the query processor. * * @param value HTTP context * @return self reference */ public QueryProcessor http(final Object value) { qc.http(value); return this; }
/** * Parses the query. * * @throws QueryException query exception */ public void parse() throws QueryException { if (parsed) return; parsed = true; qc.parseMain(query, null, sc); updating = qc.updating; }
/** * Binds the context value with a specified type, using the same rules as for {@link #bind binding * variables}. * * @param value value to be bound * @param type type (may be {@code null}) * @return self reference * @throws QueryException query exception */ public QueryProcessor context(final Object value, final String type) throws QueryException { qc.context(value, type, sc); return this; }
/** * Binds an XQuery value to a global variable. * * @param name name of variable * @param value value to be bound * @return self reference * @throws QueryException query exception */ public QueryProcessor bind(final String name, final Value value) throws QueryException { qc.bind(name, value, sc); return this; }