/** * Testing the mapper is fairly straightforward: there are two matrices to be processed * simultaneously (cut matrix of sensitivities, and the affinity matrix), and since both are * symmetric, two entries from each will be grouped together with the same key (or, in the case of * an entry along the diagonal, only two entries). * * <p>The correct grouping of these quad or pair vertices is the only output of the mapper. * * @throws Exception */ @Test public void testEigencutsAffinityCutsMapper() throws Exception { EigencutsAffinityCutsMapper mapper = new EigencutsAffinityCutsMapper(); Configuration conf = new Configuration(); conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, this.affinity.length); // set up the writer DummyRecordWriter<Text, VertexWritable> writer = new DummyRecordWriter<Text, VertexWritable>(); Mapper<IntWritable, VectorWritable, Text, VertexWritable>.Context context = DummyRecordWriter.build(mapper, conf, writer); // perform the maps for (int i = 0; i < this.affinity.length; i++) { VectorWritable aff = new VectorWritable(new DenseVector(this.affinity[i])); VectorWritable sens = new VectorWritable(new DenseVector(this.sensitivity[i])); IntWritable key = new IntWritable(i); mapper.map(key, aff, context); mapper.map(key, sens, context); } // were the vertices constructed correctly? if so, then for two 4x4 // matrices, there should be 10 unique keys with 56 total entries assertEquals("Number of keys", 10, writer.getKeys().size()); for (int i = 0; i < this.affinity.length; i++) { for (int j = 0; j < this.affinity.length; j++) { Text key = new Text(Math.max(i, j) + "_" + Math.min(i, j)); List<VertexWritable> values = writer.getValue(key); // if we're on a diagonal, there should only be 2 entries // otherwise, there should be 4 if (i == j) { assertEquals("Diagonal entry", 2, values.size()); for (VertexWritable v : values) { assertFalse("Diagonal values are zero", v.getValue() > 0); } } else { assertEquals("Off-diagonal entry", 4, values.size()); if (i + j == 3) { // all have values greater than 0 for (VertexWritable v : values) { assertTrue("Off-diagonal non-zero entries", v.getValue() > 0); } } } } } }
/** * This is by far the trickiest step. However, an easy condition is if we have only two vertices - * indicating vertices on the diagonal of the two matrices - then we simply exit (since the * algorithm does not operate on the diagonal; it makes no sense to perform cuts by isolating data * points from themselves). * * <p>If there are four points, then first we must separate the two which belong to the affinity * matrix from the two that are sensitivities. In theory, each pair should have exactly the same * value (symmetry). If the sensitivity is below a certain threshold, then we set the two values * of the affinity matrix to 0 (but not before adding the affinity values to the diagonal, so as * to maintain the overall sum of the row of the affinity matrix). * * @throws Exception */ @Test public void testEigencutsAffinityCutsCombiner() throws Exception { Configuration conf = new Configuration(); Path affinity = new Path("affinity"); Path sensitivity = new Path("sensitivity"); conf.set(EigencutsKeys.AFFINITY_PATH, affinity.getName()); conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, this.affinity.length); // since we need the working paths to distinguish the vertex types, // we can't use the mapper (since we have no way of manually setting // the Context.workingPath() ) Map<Text, List<VertexWritable>> data = buildMapData(affinity, sensitivity, this.sensitivity); // now, set up the combiner EigencutsAffinityCutsCombiner combiner = new EigencutsAffinityCutsCombiner(); DummyRecordWriter<Text, VertexWritable> redWriter = new DummyRecordWriter<Text, VertexWritable>(); Reducer<Text, VertexWritable, Text, VertexWritable>.Context redContext = DummyRecordWriter.build(combiner, conf, redWriter, Text.class, VertexWritable.class); // perform the combining for (Map.Entry<Text, List<VertexWritable>> entry : data.entrySet()) { combiner.reduce(entry.getKey(), entry.getValue(), redContext); } // test the number of cuts, there should be 2 assertEquals( "Number of cuts detected", 4, redContext.getCounter(EigencutsAffinityCutsJob.CUTSCOUNTER.NUM_CUTS).getValue()); // loop through all the results; let's see if they match up to our // affinity matrix (and all the cuts appear where they should Map<Text, List<VertexWritable>> results = redWriter.getData(); for (Map.Entry<Text, List<VertexWritable>> entry : results.entrySet()) { List<VertexWritable> row = entry.getValue(); IntWritable key = new IntWritable(Integer.parseInt(entry.getKey().toString())); double calcDiag = 0.0; double trueDiag = sumOfRowCuts(key.get(), this.sensitivity); for (VertexWritable e : row) { // should the value have been cut, e.g. set to 0? if (key.get() == e.getCol()) { // we have our diagonal calcDiag += e.getValue(); } else if (this.sensitivity[key.get()][e.getCol()] == 0.0) { // no, corresponding affinity should have same value as before assertEquals( "Preserved affinity value", this.affinity[key.get()][e.getCol()], e.getValue(), EPSILON); } else { // yes, corresponding affinity value should be 0 assertEquals("Cut affinity value", 0.0, e.getValue(), EPSILON); } } // check the diagonal has the correct sum assertEquals("Diagonal sum from cuts", trueDiag, calcDiag, EPSILON); } }