public static void evaluate( RecommenderEvaluator re, RecommenderBuilder rb, DataModelBuilder mb, DataModel dm, double trainPt) throws TasteException { System.out.printf("Evaluater Score:%s\n", re.evaluate(rb, mb, dm, trainPt, 1.0)); }
@Test public void testOne() throws TasteException { RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator(); FastByIDMap<PreferenceArray> usersData = usersData(); DataModel model = new GenericDataModel(usersData); double evaluation = evaluator.evaluate(new CrossingRecommenderBuilder(), null, model, 1, 0.5); log.info(String.valueOf(evaluation)); }
@Test public void testEvaluate() throws Exception { DataModel model = getDataModel(); Recommender recommender1 = new SlopeOneRecommender(model); Recommender recommender2 = new ItemAverageRecommender(model); RecommenderEvaluator evaluator = new PreferenceBasedRecommenderEvaluator(); RunningAverage tracker = new FullRunningAverage(); evaluator.evaluate(recommender1, recommender2, 100, tracker, Formula.MEANRANK); double eval = tracker.getAverage(); assertEquals(0.185294508934021, eval, EPSILON); }
/** 基本算法 */ public static void demo1(DataModel m) throws Exception { System.out.println("==============用户,打分,平均差值(0)=============="); // 推荐结果 UserSimilarity s = MySimilarity.getPearsonCorrelation(m); UserNeighborhood n = MyNeighborhood.getNearestN(m, s, 2); RecommenderBuilder rb = MyRecommender.userBuilder(s, n); MyRecommender.showItems(rb.buildRecommender(m).recommend(26, 1)); RecommenderEvaluator e = new AverageAbsoluteDifferenceRecommenderEvaluator(); double score = e.evaluate(rb, null, m, 0.9, 1.0); // testing data, all // data System.out.println("算法得分: " + score); System.out.println(); }
public static void demo2(DataModel m) throws Exception { System.out.println("==============用户,打分,均方根(0)=============="); // 推荐结果 UserSimilarity s = MySimilarity.getPearsonCorrelation(m); UserNeighborhood n = MyNeighborhood.getNearestN(m, s, 2); RecommenderBuilder rb = MyRecommender.userBuilder(s, n); MyRecommender.showItems(rb.buildRecommender(m).recommend(26, 1)); // RandomUtils.useTestSeed(); RecommenderEvaluator e = new RMSRecommenderEvaluator(); double score = e.evaluate(rb, null, m, 0.7, 0.3); // testing data, all // data System.out.println("算法得分: " + score); System.out.println(); }
public static void demo3(DataModel m) throws Exception { System.out.println("==============用户,无打分,平均差值(0)=============="); // 推荐结果 UserSimilarity s = new LogLikelihoodSimilarity(m); UserNeighborhood n = MyNeighborhood.getNearestN(m, s, 2); RecommenderBuilder rb = MyRecommender.userBuilder(s, n); MyRecommender.showItems(rb.buildRecommender(m).recommend(1, 1)); // 算法得分 // RandomUtils.useTestSeed(); RecommenderEvaluator e = new AverageAbsoluteDifferenceRecommenderEvaluator(); DataModelBuilder db = MyDataModel.createNoPrefDataModelBuilder(); double score = e.evaluate(rb, db, m, 0.7, 1.0); // testing data, all data System.out.println("算法得分: " + score); System.out.println(); }