/** * Sets boost of termClaimsDescriptionAbstractTitles. boost = weight = factor(tf*idf) * * @param vecsTerms * @param currentField * @param factor - adjustment factor ( ex. alpha or beta ) * @param decayFactor * @return * @throws java.io.IOException */ public Map<String, TermQuery> setBoost( Map<TermFreqVector, String> vecsTerms, String currentField, float factor, float decayFactor) throws IOException { Map<String, TermQuery> terms = new HashMap<>(); // setBoost for each of the terms of each of the docs int i = 0; float norm = (float) 1 / vecsTerms.size(); // System.out.println("--------------------------"); for (Map.Entry<TermFreqVector, String> e : vecsTerms.entrySet()) { // Increase decay String field = e.getValue(); TermFreqVector docTerms = e.getKey(); float decay = decayFactor * i; // Populate terms: with TermQuries and set boost for (String termTxt : docTerms.getTerms()) { // Create Term Term term = new Term(currentField, termTxt); // Calculate weight float tf = docTerms.getFreq(termTxt); // float idf = ir.docFreq(termTitle); int docs; float idf; if (sourceField.equals(PatentQuery.all)) { docs = ir.getDocCount(field); idf = (float) Math.log10((double) docs / (ir.docFreq(new Term(field, termTxt)) + 1)); } else { docs = ir.getDocCount(sourceField); idf = (float) Math.log10((double) docs / (ir.docFreq(new Term(sourceField, termTxt)) + 1)); } float weight = tf * idf; // System.out.println(term.text() + " -> tf= " + tf + " idf= " + idf + " // tfidf= " + weight); // Adjust weight by decay factor weight = weight - (weight * decay); // Create TermQuery and add it to the collection TermQuery termQuery = new TermQuery(term); // Calculate and set boost float boost; if (vecsTerms.size() == 1) { boost = factor * tf; } else { boost = factor; } if (boost != 0) { termQuery.setBoost(boost * norm); if (terms.containsKey(termTxt)) { TermQuery tq = terms.get(termTxt); tq.setBoost(tq.getBoost() + termQuery.getBoost()); } else { terms.put(termTxt, termQuery); } } } i++; } return terms; }
/** * Merges <code>termClaimsDescriptionAbstractTitleQueries</code> into a single query. In the * future this method should probably be in <code>Query</code> class. This is akward way of doing * it; but only merge queries method that is available is mergeBooleanQueries; so actually have to * make a string termClaimsDescriptionAbstractTitle1^boost1, * termClaimsDescriptionAbstractTitle2^boost and then parse it into a query * * @param termQueries - to merge * @param maxTerms * @return query created from termClaimsDescriptionAbstractTitleQueries including boost parameters * @throws org.apache.lucene.queryparser.classic.ParseException */ public Query mergeQueries(List<TermQuery> termQueries, int maxTerms) throws ParseException { BooleanQuery query = new BooleanQuery(); // Select only the maxTerms number of terms int termCount = Math.min(termQueries.size(), maxTerms); for (int i = 0; i < termCount; i++) { TermQuery termQuery = termQueries.get(i); query.add(termQuery, BooleanClause.Occur.SHOULD); } return query; }
private void readIndexInputFullyWithRandomSeeks(IndexInput indexInput) throws IOException { BytesRef ref = new BytesRef(scaledRandomIntBetween(1, 1024)); long pos = 0; while (pos < indexInput.length()) { assertEquals(pos, indexInput.getFilePointer()); int op = random().nextInt(5); if (op == 0) { int shift = 100 - randomIntBetween(0, 200); pos = Math.min(indexInput.length() - 1, Math.max(0, pos + shift)); indexInput.seek(pos); } else if (op == 1) { indexInput.readByte(); pos++; } else { int min = (int) Math.min(indexInput.length() - pos, ref.bytes.length); indexInput.readBytes(ref.bytes, ref.offset, min); pos += min; } } }
/** * Adjust termClaimsDescriptionAbstractTitle features of the docs with alpha * query; and beta; * and assign weights/boost to termClaimsDescriptionAbstractTitles (tf*idf). * * @param query * @param currentField * @param alpha * @param beta - factor of the equation * @param gamma * @param decay * @param maxExpandedQueryTerms - maximum number of termClaimsDescriptionAbstractTitles in * expanded query * @return expandedQuery with boost factors adjusted using Rocchio's algorithm * @throws IOException * @throws ParseException */ public Query adjust( Query query, String currentField, float alpha, float beta, float gamma, float decay, int maxExpandedQueryTerms) throws IOException, ParseException { Query expandedQuery; // setBoost of docs terms Map<String, TermQuery> relevantDocsTerms = setBoost(docsTermVectorReldocs, currentField, beta, decay); Map<String, TermQuery> irrrelevantDocsTerms = setBoost(docsTermVectorIrreldocs, currentField, gamma, decay); // Map<String, TermQuery> relevantDocsTerms = new HashMap<>(); // Map<String, TermQuery> irrrelevantDocsTerms = new HashMap<>(); // setBoost of query terms // Get queryTerms from the query // combine weights according to expansion formula List<TermQuery> expandedQueryTerms = combine(new HashMap<String, TermQuery>(), relevantDocsTerms, irrrelevantDocsTerms); // Sort by boost=weight Comparator comparator = new QueryBoostComparator(); Collections.sort(expandedQueryTerms, comparator); relevantDocsTerms.clear(); int termCount = Math.min(expandedQueryTerms.size(), maxExpandedQueryTerms); for (int i = 0; i < termCount; i++) { TermQuery tq = expandedQueryTerms.get(i); relevantDocsTerms.put(tq.getTerm().text(), tq); System.out.print(tq.getTerm().text() + ", "); } TermFreqVector queryTermsVector = new TermFreqVector(query); Map<String, TermQuery> queryTerms; queryTerms = setBoost(queryTermsVector, currentField, alpha); // List<TermQuery> queryTermsList=new ArrayList(queryTerms.values()); // Collections.sort(queryTermsList, comparator); // queryTerms.clear(); // for(TermQuery tq:queryTermsList){ // queryTerms.put(tq.getTerm().text(), tq); // } expandedQueryTerms = combine(queryTerms, relevantDocsTerms, new HashMap<String, TermQuery>()); Collections.sort(expandedQueryTerms, comparator); // Create Expanded Query expandedQuery = mergeQueries(expandedQueryTerms, Integer.MAX_VALUE); return expandedQuery; }
/** * Create a PriorityQueue from a word->tf map. * * @param words a map of words keyed on the word(String) with Int objects as the values. * @param fieldNames an array of field names to override defaults. */ private PriorityQueue<ScoreTerm> createQueue(Map<String, Int> words, String... fieldNames) throws IOException { // have collected all words in doc and their freqs int numDocs = ir.numDocs(); final int limit = Math.min(maxQueryTerms, words.size()); FreqQ queue = new FreqQ(limit); // will order words by score for (String word : words.keySet()) { // for every word int tf = words.get(word).x; // term freq in the source doc if (minTermFreq > 0 && tf < minTermFreq) { continue; // filter out words that don't occur enough times in the source } // go through all the fields and find the largest document frequency String topField = fieldNames[0]; int docFreq = 0; for (String fieldName : fieldNames) { int freq = ir.docFreq(new Term(fieldName, word)); topField = (freq > docFreq) ? fieldName : topField; docFreq = (freq > docFreq) ? freq : docFreq; } if (minDocFreq > 0 && docFreq < minDocFreq) { continue; // filter out words that don't occur in enough docs } if (docFreq > maxDocFreq) { continue; // filter out words that occur in too many docs } if (docFreq == 0) { continue; // index update problem? } float idf = similarity.idf(docFreq, numDocs); float score = tf * idf; if (queue.size() < limit) { // there is still space in the queue queue.add(new ScoreTerm(word, topField, score, idf, docFreq, tf)); } else { ScoreTerm term = queue.top(); if (term.score < score) { // update the smallest in the queue in place and update the queue. term.update(word, topField, score, idf, docFreq, tf); queue.updateTop(); } } } return queue; }
private void corruptFile(Directory dir, String fileIn, String fileOut) throws IOException { IndexInput input = dir.openInput(fileIn, IOContext.READONCE); IndexOutput output = dir.createOutput(fileOut, IOContext.DEFAULT); long len = input.length(); byte[] b = new byte[1024]; long broken = randomInt((int) len); long pos = 0; while (pos < len) { int min = (int) Math.min(input.length() - pos, b.length); input.readBytes(b, 0, min); if (broken >= pos && broken < pos + min) { // Flip one byte int flipPos = (int) (broken - pos); b[flipPos] = (byte) (b[flipPos] ^ 42); } output.writeBytes(b, min); pos += min; } IOUtils.close(input, output); }
@Test public void testVerifyingIndexOutput() throws IOException { Directory dir = newDirectory(); IndexOutput output = dir.createOutput("foo.bar", IOContext.DEFAULT); int iters = scaledRandomIntBetween(10, 100); for (int i = 0; i < iters; i++) { BytesRef bytesRef = new BytesRef(TestUtil.randomRealisticUnicodeString(random(), 10, 1024)); output.writeBytes(bytesRef.bytes, bytesRef.offset, bytesRef.length); } CodecUtil.writeFooter(output); output.close(); IndexInput indexInput = dir.openInput("foo.bar", IOContext.DEFAULT); String checksum = Store.digestToString(CodecUtil.retrieveChecksum(indexInput)); indexInput.seek(0); BytesRef ref = new BytesRef(scaledRandomIntBetween(1, 1024)); long length = indexInput.length(); IndexOutput verifyingOutput = new Store.LuceneVerifyingIndexOutput( new StoreFileMetaData("foo1.bar", length, checksum), dir.createOutput("foo1.bar", IOContext.DEFAULT)); while (length > 0) { if (random().nextInt(10) == 0) { verifyingOutput.writeByte(indexInput.readByte()); length--; } else { int min = (int) Math.min(length, ref.bytes.length); indexInput.readBytes(ref.bytes, ref.offset, min); verifyingOutput.writeBytes(ref.bytes, ref.offset, min); length -= min; } } Store.verify(verifyingOutput); verifyingOutput.writeByte((byte) 0x0); try { Store.verify(verifyingOutput); fail("should be a corrupted index"); } catch (CorruptIndexException | IndexFormatTooOldException | IndexFormatTooNewException ex) { // ok } IOUtils.close(indexInput, verifyingOutput, dir); }
@Test public void testRandom() throws Exception { Directory directory = newDirectory(); final Random r = random(); final IndexWriterConfig iwc = LuceneTestCase.newIndexWriterConfig(r, new MockAnalyzer(r)) .setMaxBufferedDocs(IndexWriterConfig.DISABLE_AUTO_FLUSH) .setRAMBufferSizeMB( scaledRandomIntBetween(16, 64)); // we might index a lot - don't go crazy here RandomIndexWriter indexWriter = new RandomIndexWriter(r, directory, iwc); int numUniqueChildValues = scaledRandomIntBetween(100, 2000); String[] childValues = new String[numUniqueChildValues]; for (int i = 0; i < numUniqueChildValues; i++) { childValues[i] = Integer.toString(i); } IntOpenHashSet filteredOrDeletedDocs = new IntOpenHashSet(); int childDocId = 0; int numParentDocs = scaledRandomIntBetween(1, numUniqueChildValues); ObjectObjectOpenHashMap<String, NavigableMap<String, FloatArrayList>> childValueToParentIds = new ObjectObjectOpenHashMap<>(); for (int parentDocId = 0; parentDocId < numParentDocs; parentDocId++) { boolean markParentAsDeleted = rarely(); boolean filterMe = rarely(); String parent = Integer.toString(parentDocId); Document document = new Document(); document.add( new StringField(UidFieldMapper.NAME, Uid.createUid("parent", parent), Field.Store.YES)); document.add(new StringField(TypeFieldMapper.NAME, "parent", Field.Store.NO)); if (markParentAsDeleted) { filteredOrDeletedDocs.add(parentDocId); document.add(new StringField("delete", "me", Field.Store.NO)); } if (filterMe) { filteredOrDeletedDocs.add(parentDocId); document.add(new StringField("filter", "me", Field.Store.NO)); } indexWriter.addDocument(document); int numChildDocs = scaledRandomIntBetween(0, 100); for (int i = 0; i < numChildDocs; i++) { boolean markChildAsDeleted = rarely(); String childValue = childValues[random().nextInt(childValues.length)]; document = new Document(); document.add( new StringField( UidFieldMapper.NAME, Uid.createUid("child", Integer.toString(childDocId++)), Field.Store.NO)); document.add(new StringField(TypeFieldMapper.NAME, "child", Field.Store.NO)); document.add( new StringField( ParentFieldMapper.NAME, Uid.createUid("parent", parent), Field.Store.NO)); document.add(new StringField("field1", childValue, Field.Store.NO)); if (markChildAsDeleted) { document.add(new StringField("delete", "me", Field.Store.NO)); } indexWriter.addDocument(document); if (!markChildAsDeleted) { NavigableMap<String, FloatArrayList> parentIdToChildScores; if (childValueToParentIds.containsKey(childValue)) { parentIdToChildScores = childValueToParentIds.lget(); } else { childValueToParentIds.put(childValue, parentIdToChildScores = new TreeMap<>()); } if (!markParentAsDeleted && !filterMe) { FloatArrayList childScores = parentIdToChildScores.get(parent); if (childScores == null) { parentIdToChildScores.put(parent, childScores = new FloatArrayList()); } childScores.add(1f); } } } } // Delete docs that are marked to be deleted. indexWriter.deleteDocuments(new Term("delete", "me")); indexWriter.commit(); IndexReader indexReader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(indexReader); Engine.Searcher engineSearcher = new Engine.Searcher(ChildrenQueryTests.class.getSimpleName(), searcher); ((TestSearchContext) SearchContext.current()) .setSearcher(new ContextIndexSearcher(SearchContext.current(), engineSearcher)); int max = numUniqueChildValues / 4; for (int i = 0; i < max; i++) { // Simulate a parent update if (random().nextBoolean()) { final int numberOfUpdatableParents = numParentDocs - filteredOrDeletedDocs.size(); int numberOfUpdates = RandomInts.randomIntBetween( random(), 0, Math.min(numberOfUpdatableParents, TEST_NIGHTLY ? 25 : 5)); for (int j = 0; j < numberOfUpdates; j++) { int parentId; do { parentId = random().nextInt(numParentDocs); } while (filteredOrDeletedDocs.contains(parentId)); String parentUid = Uid.createUid("parent", Integer.toString(parentId)); indexWriter.deleteDocuments(new Term(UidFieldMapper.NAME, parentUid)); Document document = new Document(); document.add(new StringField(UidFieldMapper.NAME, parentUid, Field.Store.YES)); document.add(new StringField(TypeFieldMapper.NAME, "parent", Field.Store.NO)); indexWriter.addDocument(document); } indexReader.close(); indexReader = DirectoryReader.open(indexWriter.w, true); searcher = new IndexSearcher(indexReader); engineSearcher = new Engine.Searcher(ChildrenConstantScoreQueryTests.class.getSimpleName(), searcher); ((TestSearchContext) SearchContext.current()) .setSearcher(new ContextIndexSearcher(SearchContext.current(), engineSearcher)); } String childValue = childValues[random().nextInt(numUniqueChildValues)]; int shortCircuitParentDocSet = random().nextInt(numParentDocs); ScoreType scoreType = ScoreType.values()[random().nextInt(ScoreType.values().length)]; // leave min/max set to 0 half the time int minChildren = random().nextInt(2) * scaledRandomIntBetween(0, 110); int maxChildren = random().nextInt(2) * scaledRandomIntBetween(minChildren, 110); QueryBuilder queryBuilder = hasChildQuery("child", constantScoreQuery(termQuery("field1", childValue))) .scoreType(scoreType.name().toLowerCase(Locale.ENGLISH)) .minChildren(minChildren) .maxChildren(maxChildren) .setShortCircuitCutoff(shortCircuitParentDocSet); // Using a FQ, will invoke / test the Scorer#advance(..) and also let the Weight#scorer not // get live docs as acceptedDocs queryBuilder = filteredQuery(queryBuilder, notFilter(termFilter("filter", "me"))); Query query = parseQuery(queryBuilder); BitSetCollector collector = new BitSetCollector(indexReader.maxDoc()); int numHits = 1 + random().nextInt(25); TopScoreDocCollector actualTopDocsCollector = TopScoreDocCollector.create(numHits); searcher.search(query, MultiCollector.wrap(collector, actualTopDocsCollector)); FixedBitSet actualResult = collector.getResult(); FixedBitSet expectedResult = new FixedBitSet(indexReader.maxDoc()); TopScoreDocCollector expectedTopDocsCollector = TopScoreDocCollector.create(numHits); if (childValueToParentIds.containsKey(childValue)) { LeafReader slowLeafReader = SlowCompositeReaderWrapper.wrap(indexReader); final FloatArrayList[] scores = new FloatArrayList[slowLeafReader.maxDoc()]; Terms terms = slowLeafReader.terms(UidFieldMapper.NAME); if (terms != null) { NavigableMap<String, FloatArrayList> parentIdToChildScores = childValueToParentIds.lget(); TermsEnum termsEnum = terms.iterator(null); DocsEnum docsEnum = null; for (Map.Entry<String, FloatArrayList> entry : parentIdToChildScores.entrySet()) { int count = entry.getValue().elementsCount; if (count >= minChildren && (maxChildren == 0 || count <= maxChildren)) { TermsEnum.SeekStatus seekStatus = termsEnum.seekCeil(Uid.createUidAsBytes("parent", entry.getKey())); if (seekStatus == TermsEnum.SeekStatus.FOUND) { docsEnum = termsEnum.docs(slowLeafReader.getLiveDocs(), docsEnum, DocsEnum.FLAG_NONE); expectedResult.set(docsEnum.nextDoc()); scores[docsEnum.docID()] = new FloatArrayList(entry.getValue()); } else if (seekStatus == TermsEnum.SeekStatus.END) { break; } } } } MockScorer mockScorer = new MockScorer(scoreType); final LeafCollector leafCollector = expectedTopDocsCollector.getLeafCollector(slowLeafReader.getContext()); leafCollector.setScorer(mockScorer); for (int doc = expectedResult.nextSetBit(0); doc < slowLeafReader.maxDoc(); doc = doc + 1 >= expectedResult.length() ? DocIdSetIterator.NO_MORE_DOCS : expectedResult.nextSetBit(doc + 1)) { mockScorer.scores = scores[doc]; leafCollector.collect(doc); } } assertBitSet(actualResult, expectedResult, searcher); assertTopDocs(actualTopDocsCollector.topDocs(), expectedTopDocsCollector.topDocs()); } indexWriter.close(); indexReader.close(); directory.close(); }
public int compare(ScoreDoc o1, ScoreDoc o2) { return (int) Math.signum(o2.score - o1.score); }
/** * Creates a set of reference objects and stores it in a new index (name "<indexPath>-ro"). Then * creates ordered lists of reference object positions for each data item in the index with given * feature. Finally a new index (name "<indexPath>-ms") is created where all the original * documents as well as the new data are stored. * * @param indexPath the path to the original index * @throws IOException */ public void createIndex(String indexPath) throws IOException { IndexReader reader = DirectoryReader.open(FSDirectory.open(new File(indexPath))); int numDocs = reader.numDocs(); if (numDocs < numReferenceObjects) { throw new UnsupportedOperationException("Too few documents in index."); } // progress report progress.setNumDocsAll(numDocs); progress.setCurrentState(State.RoSelection); boolean hasDeletions = reader.hasDeletions(); // init reference objects: IndexWriter iw = LuceneUtils.createIndexWriter(indexPath + "-ro", true); HashSet<Integer> referenceObjsIds = new HashSet<Integer>(numReferenceObjects); double numDocsDouble = (double) numDocs; while (referenceObjsIds.size() < numReferenceObjects) { referenceObjsIds.add((int) (numDocsDouble * Math.random())); } int count = 0; if (hasDeletions) { System.err.println( "WARNING: There are deleted docs in your index. You should " + "optimize your index before using this method."); } // progress report progress.setCurrentState(State.RoIndexing); // find them in the index and put them into a separate index: for (int i : referenceObjsIds) { count++; Document document = reader.document(i); document.add(new Field("ro-id", count + "", StringField.TYPE_STORED)); iw.addDocument(document); } iw.commit(); iw.close(); // progress report progress.setCurrentState(State.Indexing); // now find the reference objects for each entry ;) IndexReader readerRo = DirectoryReader.open(FSDirectory.open(new File(indexPath + "-ro"))); ImageSearcher searcher = new GenericImageSearcher(numReferenceObjectsUsed, featureClass, featureFieldName); Map<String, Analyzer> analyzerPerField = new HashMap<String, Analyzer>(); analyzerPerField.put("ro-order", new WhitespaceAnalyzer(LuceneUtils.LUCENE_VERSION)); PerFieldAnalyzerWrapper aWrapper = new PerFieldAnalyzerWrapper( new SimpleAnalyzer(LuceneUtils.LUCENE_VERSION), analyzerPerField); iw = new IndexWriter( FSDirectory.open(new File(indexPath)), new IndexWriterConfig(LuceneUtils.LUCENE_VERSION, aWrapper) .setOpenMode(IndexWriterConfig.OpenMode.CREATE)); StringBuilder sb = new StringBuilder(256); // Needed for check whether the document is deleted. Bits liveDocs = MultiFields.getLiveDocs(reader); for (int i = 0; i < numDocs; i++) { if (reader.hasDeletions() && !liveDocs.get(i)) continue; // if it is deleted, just ignore it. Document document = reader.document(i); ImageSearchHits hits = searcher.search(document, readerRo); sb.delete(0, sb.length()); for (int j = 0; j < numReferenceObjectsUsed; j++) { sb.append(hits.doc(j).getValues("ro-id")[0]); sb.append(' '); } // System.out.println(sb.toString()); document.add(new TextField("ro-order", sb.toString(), Field.Store.YES)); iw.updateDocument( new Term( DocumentBuilder.FIELD_NAME_IDENTIFIER, document.getValues(DocumentBuilder.FIELD_NAME_IDENTIFIER)[0]), document); // progress report progress.setNumDocsProcessed(progress.getNumDocsProcessed() + 1); } iw.commit(); iw.close(); // progress report progress.setCurrentState(State.Idle); }
/** @return number of bytes per term, based on the NumericValue.requiredBits() */ @Override public long bytesPerValue(BytesRef term) { // Estimate about about 0.8 (8 / 10) compression ratio for // numbers, but at least 4 bytes return Math.max(type.requiredBits() / 10, 4); }
protected CommonSettings.MemoryStorageFormat chooseStorageFormat( LeafReader reader, PackedLongValues values, Ordinals build, RandomAccessOrds ordinals, long minValue, long maxValue, float acceptableOverheadRatio, int pageSize) { CommonSettings.MemoryStorageFormat format; // estimate memory usage for a single packed array long packedDelta = maxValue - minValue + 1; // allow for a missing value // valuesDelta can be negative if the difference between max and min values overflows the // positive side of longs. int bitsRequired = packedDelta < 0 ? 64 : PackedInts.bitsRequired(packedDelta); PackedInts.FormatAndBits formatAndBits = PackedInts.fastestFormatAndBits(reader.maxDoc(), bitsRequired, acceptableOverheadRatio); final long singleValuesSize = formatAndBits.format.longCount( PackedInts.VERSION_CURRENT, reader.maxDoc(), formatAndBits.bitsPerValue) * 8L; // ordinal memory usage final long ordinalsSize = build.ramBytesUsed() + values.ramBytesUsed(); // estimate the memory signature of paged packing long pagedSingleValuesSize = (reader.maxDoc() / pageSize + 1) * RamUsageEstimator.NUM_BYTES_OBJECT_REF; // array of pages int pageIndex = 0; long pageMinOrdinal = Long.MAX_VALUE; long pageMaxOrdinal = Long.MIN_VALUE; for (int i = 1; i < reader.maxDoc(); ++i, pageIndex = (pageIndex + 1) % pageSize) { ordinals.setDocument(i); if (ordinals.cardinality() > 0) { long ordinal = ordinals.ordAt(0); pageMaxOrdinal = Math.max(ordinal, pageMaxOrdinal); pageMinOrdinal = Math.min(ordinal, pageMinOrdinal); } if (pageIndex == pageSize - 1) { // end of page, we now know enough to estimate memory usage pagedSingleValuesSize += getPageMemoryUsage( values, acceptableOverheadRatio, pageSize, pageMinOrdinal, pageMaxOrdinal); pageMinOrdinal = Long.MAX_VALUE; pageMaxOrdinal = Long.MIN_VALUE; } } if (pageIndex > 0) { // last page estimation pageIndex++; pagedSingleValuesSize += getPageMemoryUsage( values, acceptableOverheadRatio, pageSize, pageMinOrdinal, pageMaxOrdinal); } if (ordinalsSize < singleValuesSize) { if (ordinalsSize < pagedSingleValuesSize) { format = CommonSettings.MemoryStorageFormat.ORDINALS; } else { format = CommonSettings.MemoryStorageFormat.PAGED; } } else { if (pagedSingleValuesSize < singleValuesSize) { format = CommonSettings.MemoryStorageFormat.PAGED; } else { format = CommonSettings.MemoryStorageFormat.PACKED; } } return format; }