public static void main(String[] args) throws Exception { String input = "hdfs://192.168.0.110:9000/input/access.log"; String output = "hdfs://192.168.0.110:9000/user/hdfs/pv"; JobConf conf = new JobConf(KPIPV.class); conf.setJobName("KPIPV"); conf.setMapOutputKeyClass(Text.class); conf.setMapOutputValueClass(IntWritable.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(KPIPVMapper.class); conf.setCombinerClass(KPIPVReducer.class); conf.setReducerClass(KPIPVReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf, new Path(output)); JobClient.runJob(conf); System.exit(0); }
public static void main(String[] args) throws Exception { String input = "hdfs://centos:9000/access.log.10"; String output = "hdfs://centos:9000/out_kpitime"; JobConf conf = new JobConf(KPITime.class); conf.setJobName("KPITime"); // conf.addResource("classpath:/hadoop/core-site.xml"); // conf.addResource("classpath:/hadoop/hdfs-site.xml"); // conf.addResource("classpath:/hadoop/mapred-site.xml"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(KPITimeMapper.class); conf.setCombinerClass(KPITimeReducer.class); conf.setReducerClass(KPITimeReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf, new Path(output)); JobClient.runJob(conf); System.exit(0); }
/** * Run the job * * @param params The Job parameters containing the gramSize, input output folders, defaultCat, * encoding */ public static void runJob(Parameters params) throws IOException { Configurable client = new JobClient(); JobConf conf = new JobConf(BayesClassifierDriver.class); conf.setJobName("Bayes Classifier Driver running over input: " + params.get("testDirPath")); conf.setOutputKeyClass(StringTuple.class); conf.setOutputValueClass(DoubleWritable.class); FileInputFormat.setInputPaths(conf, new Path(params.get("testDirPath"))); Path outPath = new Path(params.get("testDirPath") + "-output"); FileOutputFormat.setOutputPath(conf, outPath); conf.setInputFormat(KeyValueTextInputFormat.class); conf.setMapperClass(BayesClassifierMapper.class); conf.setCombinerClass(BayesClassifierReducer.class); conf.setReducerClass(BayesClassifierReducer.class); conf.setOutputFormat(SequenceFileOutputFormat.class); conf.set( "io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization," + "org.apache.hadoop.io.serializer.WritableSerialization"); HadoopUtil.overwriteOutput(outPath); conf.set("bayes.parameters", params.toString()); client.setConf(conf); JobClient.runJob(conf); Path outputFiles = new Path(outPath, "part*"); FileSystem dfs = FileSystem.get(outPath.toUri(), conf); ConfusionMatrix matrix = readResult(dfs, outputFiles, conf, params); log.info("{}", matrix.summarize()); }
public static void main(String[] args) throws Exception { String dir1 = "/user/miyuru/wcout"; String dir2 = "/user/miyuru/notinverts"; // We first delete the temporary directories if they exist on the HDFS FileSystem fs1 = FileSystem.get(new JobConf()); if (fs1.exists(new Path(dir2))) { fs1.delete(new Path(dir2), true); } JobConf conf = new JobConf(); conf.setNumMapTasks(96); conf.setOutputKeyClass(LongWritable.class); conf.setOutputValueClass(LongWritable.class); conf.setMapperClass(TokenizerMapper.class); conf.setReducerClass(IntSumReducer.class); conf.setCombinerClass(IntSumReducer.class); conf.setInputFormat(NLinesInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(dir1)); FileOutputFormat.setOutputPath(conf, new Path(dir2)); Job job = new Job(conf, "NotInFinder"); job.setJarByClass(WordCount.class); // job.setMapperClass(TokenizerMapper.class); // job.setCombinerClass(IntSumReducer.class); // job.setReducerClass(IntSumReducer.class); // job.setOutputKeyClass(LongWritable.class); // job.setOutputValueClass(LongWritable.class); job.setSortComparatorClass(SortComparator.class); job.waitForCompletion(true); }
public int run(String[] args) throws Exception { if (args.length < 2) { printUsage(); return 1; } JobConf job = new JobConf(getConf(), MultiFileWordCount.class); job.setJobName("MultiFileWordCount"); // set the InputFormat of the job to our InputFormat job.setInputFormat(MyInputFormat.class); // the keys are words (strings) job.setOutputKeyClass(Text.class); // the values are counts (ints) job.setOutputValueClass(IntWritable.class); // use the defined mapper job.setMapperClass(MapClass.class); // use the WordCount Reducer job.setCombinerClass(LongSumReducer.class); job.setReducerClass(LongSumReducer.class); FileInputFormat.addInputPaths(job, args[0]); FileOutputFormat.setOutputPath(job, new Path(args[1])); JobClient.runJob(job); return 0; }
public JobBuilder reducer(Class<? extends Reducer> reducer, boolean hasCombiner) throws IOException { if (reducer != IdentityReducer.class) _jobConf.setReducerClass(reducer); if (hasCombiner) _jobConf.setCombinerClass(reducer); _jobConf.setJarByClass(reducer); return this; }
@Override public int run(String[] args) throws Exception { if (args.length != 2) { System.err.printf( "Usage: %s [generic options] <input> <output>\n", getClass().getSimpleName()); ToolRunner.printGenericCommandUsage(System.err); return -1; } JobConf conf = new JobConf(getConf(), getClass()); conf.setJobName("Max temperature"); FileInputFormat.addInputPath(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(MaxTemperatureMapper.class); conf.setCombinerClass(MaxTemperatureReducer.class); conf.setReducerClass(MaxTemperatureReducer.class); // vv MaxTemperatureDriverV6 conf.setProfileEnabled(true); conf.setProfileParams( "-agentlib:hprof=cpu=samples,heap=sites,depth=6," + "force=n,thread=y,verbose=n,file=%s"); conf.setProfileTaskRange(true, "0-2"); // ^^ MaxTemperatureDriverV6 JobClient.runJob(conf); return 0; }
/** * Configure the job * * @param conf Job to configure * @param rules classification rules to evaluate * @param target label value to evaluate the rules for * @param inpath input path (the dataset) * @param outpath output <code>Path</code> * @param split DatasetSplit used to separate training and testing input */ private static void configureJob( JobConf conf, List<? extends Rule> rules, int target, Path inpath, Path outpath, DatasetSplit split) { split.storeJobParameters(conf); FileInputFormat.setInputPaths(conf, inpath); FileOutputFormat.setOutputPath(conf, outpath); conf.setOutputKeyClass(LongWritable.class); conf.setOutputValueClass(CDFitness.class); conf.setMapperClass(CDMapper.class); conf.setCombinerClass(CDReducer.class); conf.setReducerClass(CDReducer.class); conf.setInputFormat(DatasetTextInputFormat.class); conf.setOutputFormat(SequenceFileOutputFormat.class); // store the parameters conf.set(CDMapper.CLASSDISCOVERY_RULES, StringUtils.toString(rules)); conf.set(CDMapper.CLASSDISCOVERY_DATASET, StringUtils.toString(DataSet.getDataSet())); conf.setInt(CDMapper.CLASSDISCOVERY_TARGET_LABEL, target); }
/** * {@inheritDoc} * * @see org.apache.hadoop.util.Tool#run(java.lang.String[]) */ @Override public int run(String[] args) throws Exception { JobConf configuration = new JobConf(getConf(), WordCountExtended.class); configuration.setJobName(JOB_NAME); configuration.setOutputKeyClass(Text.class); configuration.setOutputValueClass(IntWritable.class); configuration.setMapperClass(Map.class); configuration.setCombinerClass(Reduce.class); configuration.setReducerClass(Reduce.class); configuration.setInputFormat(TextInputFormat.class); configuration.setOutputFormat(TextOutputFormat.class); List<String> otherArgs = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { if (JOB_SKIP_ARGUMENT.equals(args[i])) { DistributedCache.addCacheFile(new Path(args[++i]).toUri(), configuration); configuration.setBoolean(JOB_PARAMETER_SKIP_PATTERNS, true); } else { otherArgs.add(args[i]); } } FileInputFormat.setInputPaths(configuration, new Path(otherArgs.get(0))); FileOutputFormat.setOutputPath(configuration, new Path(otherArgs.get(1))); JobClient.runJob(configuration); return 0; }
/** * The main driver for word count map/reduce program. Invoke this method to submit the map/reduce * job. * * @throws IOException When there is communication problems with the job tracker. */ public int run(String[] args) throws Exception { JobConf conf = new JobConf(getConf(), WordCountSeqOutput.class); conf.setJobName("wordcount_seqOF"); conf.setMapOutputKeyClass(Text.class); conf.setMapOutputValueClass(IntWritable.class); // the keys are words (strings) conf.setOutputKeyClass(Text.class); // the values are counts (ints) // conf.setOutputValueClass(IntWritable.class); conf.setOutputValueClass(Text.class); conf.setMapperClass(MapClass.class); conf.setCombinerClass(Combiner.class); conf.setReducerClass(Reduce.class); conf.setOutputFormat(SequenceFileOutputFormat.class); // // compress Mapper output // conf.setCompressMapOutput(true); // conf.setMapOutputCompressorClass(org.apache.hadoop.io.compress.GzipCodec.class); // compress final output conf.set("mapred.output.compress", conf.get("mapred.output.compress", "true")); conf.set("mapred.output.compression.type", conf.get("mapred.output.compression.type", "BLOCK")); conf.set( "mapred.output.compression.codec", conf.get("mapred.output.compression.codec", "org.apache.hadoop.io.compress.GzipCodec")); List<String> other_args = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { try { if ("-m".equals(args[i])) { conf.setNumMapTasks(Integer.parseInt(args[++i])); } else if ("-r".equals(args[i])) { conf.setNumReduceTasks(Integer.parseInt(args[++i])); } else { other_args.add(args[i]); } } catch (NumberFormatException except) { System.out.println("ERROR: Integer expected instead of " + args[i]); return printUsage(); } catch (ArrayIndexOutOfBoundsException except) { System.out.println("ERROR: Required parameter missing from " + args[i - 1]); return printUsage(); } } // Make sure there are exactly 2 parameters left. if (other_args.size() != 2) { System.out.println( "ERROR: Wrong number of parameters: " + other_args.size() + " instead of 2."); return printUsage(); } FileInputFormat.setInputPaths(conf, other_args.get(0)); FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1))); JobClient.runJob(conf); return 0; }
public int run(String[] args) throws Exception { if (args.length != 5) { printUsage(); return -1; } String inputPath = args[0]; String outputPath = args[1]; int mapTasks = Integer.parseInt(args[2]); int reduceTasks = Integer.parseInt(args[3]); String stoplistPath = args[4]; sLogger.info("Tool: AFormatter"); sLogger.info(" - input path: " + inputPath); sLogger.info(" - output path: " + outputPath); sLogger.info(" - number of mappers: " + mapTasks); sLogger.info(" - number of reducers: " + reduceTasks); JobConf conf = new JobConf(AFormatterWG.class); conf.setJobName("Authority Formatter -- Web Graph"); conf.setNumMapTasks(mapTasks); conf.setNumReduceTasks(reduceTasks); FileInputFormat.setInputPaths(conf, new Path(inputPath)); FileOutputFormat.setOutputPath(conf, new Path(outputPath)); FileOutputFormat.setCompressOutput(conf, false); // conf.setInputFormat(SequenceFileInputFormat.class); conf.setOutputKeyClass(IntWritable.class); conf.setOutputValueClass(HITSNode.class); conf.setOutputFormat(SequenceFileOutputFormat.class); conf.setCompressMapOutput(true); conf.setSpeculativeExecution(false); // InputSampler.Sampler<IntWritable, Text> sampler = new // InputSampler.RandomSampler<IntWritable, Text>(0.1, 10, 10); // InputSampler.writePartitionFile(conf, sampler); // conf.setPartitionerClass(TotalOrderPartitioner.class); conf.setMapperClass(AFormatMapperIMC.class); conf.setCombinerClass(AFormatReducer.class); conf.setReducerClass(AFormatReducer.class); // Delete the output directory if it exists already Path outputDir = new Path(outputPath); Path stopList = new Path(stoplistPath); FileSystem.get(conf).delete(outputDir, true); long startTime = System.currentTimeMillis(); sLogger.info("Starting job"); DistributedCache.addCacheFile(stopList.toUri(), conf); JobClient.runJob(conf); sLogger.info( "Job Finished in " + (System.currentTimeMillis() - startTime) / 1000.0 + " seconds"); return 0; }
public static void main(String[] args) throws IOException { /*JobConf conf = new JobConf(); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); conf.setMapperClass(IpCounterMapper.class); conf.setCombinerClass(IpCounterReducer.class); conf.setReducerClass(IpCounterReducer.class); String inputDir = args[0]; String outputDir = args[1]; FileInputFormat.setInputPaths(conf, inputDir); FileOutputFormat.setOutputPath(conf, new Path(outputDir)); boolean flag = JobClient.runJob(conf).isSuccessful(); System.out.println(args.length);*/ if (args.length < 2) { System.out.println("args not right!"); return; } JobConf conf = new JobConf(IpCount1.class); // set output key class conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); // set mapper & reducer class conf.setMapperClass(IpCounterMapper.class); conf.setCombinerClass(IpCounterReducer.class); conf.setReducerClass(IpCounterReducer.class); // set format conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); String inputDir = args[0]; String outputDir = args[1]; // FileInputFormat.setInputPaths(conf, "/user/hadoop/rongxin/locationinput/"); FileInputFormat.setInputPaths(conf, inputDir); FileOutputFormat.setOutputPath(conf, new Path(outputDir)); boolean flag = JobClient.runJob(conf).isSuccessful(); }
public static void run(Map<String, String> path) throws IOException { JobConf conf = Recommend.config(); conf.setJarByClass(Step1.class); String input = "hdfs://192.168.201.11:9000/user/hdfs/recommend/data1"; // 提交的处理训练集的目录 String input1 = path.get("Step1Input"); String output = path.get("Step1Output"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf); hdfs.rmr(output); hdfs.rmr(input1); hdfs.mkdirs(input1); // hdfs.copyFile(path.get("data"), input); conf.setMapOutputKeyClass(IntWritable.class); conf.setMapOutputValueClass(Text.class); conf.setOutputKeyClass(IntWritable.class); conf.setOutputValueClass(Text.class); conf.setMapperClass(Step1_ToUserPreMapper.class); conf.setCombinerClass(Step1_ToItemVectorReducer.class); conf.setReducerClass(Step1_ToItemVectorReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); // int maxCurrentReduceTasks = conf.getInt("mapred.tasktracker.reduce.tasks.maximum", 1); // int ReduceTasks = (int) (2 * maxCurrentReduceTasks * 0.95); // conf.setNumReduceTasks(ReduceTasks); /* * reduce的数目最好等于0.95或1.75乘以工作节点数,再乘以mapred.tasktracker.reduce.tasks.maximum(一般是每个节点的CPU数) * 因子为0.95时会让所有的reduce任务立即装载,并当map任务结束时复制它们的输出结果。当因子为1.75时,一些reduce任务会立即 * 被装载,而其他一些则会等待。更早的节点会较早地完成第一轮reduce 任务并开始第二轮。最慢的节点第二轮不需要处理任何的reduce * 任务,这样可以带来更好的负载平衡。 */ // conf.setNumReduceTasks(3); //这里是在虚拟机下测试,就直接设成节点数 FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf); while (!job.isComplete()) { job.waitForCompletion(); } }
// Main function public static void main(String[] args) throws Exception { // TODO Auto-generated method stub JobConf conf = new JobConf(ProcessUnits.class); conf.setJobName("max_eletricityunits"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(EE_Mapper.class); conf.setCombinerClass(EE_Reducer.class); conf.setReducerClass(EE_Reducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); }
public static void main(String args[]) throws IOException { JobConf job = new JobConf(WordCountJob.class); job.setJobName("Word Count Example"); FileInputFormat.setInputPaths(job, args[0]); job.setInputFormat(TextInputFormat.class); job.setMapperClass(MapTask.class); job.setCombinerClass(ReduceTask.class); job.setReducerClass(ReduceTask.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setOutputFormat(TextOutputFormat.class); FileOutputFormat.setOutputPath(job, new Path(args[1])); JobClient.runJob(job); }
public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); }
public static void main(String[] args) throws Exception { JobConf conf = new JobConf(MapReduceFour.class); conf.setJobName("step-Four"); conf.setMapOutputKeyClass(VarLongWritable.class); conf.setMapOutputValueClass(VectorWritable.class); conf.setOutputKeyClass(RecommendResult.class); conf.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths( conf, new Path("/Users/bai/Documents/mapreduce/output-third/part-00000")); // DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", // "jdbc:mysql://localhost:3306/hotelrecommend","root","root"); // DBOutputFormat.setOutput(conf,"recommend","uid","hid","recommendValue"); conf.setMapperClass(PartialMultiplyMapper.class); conf.setCombinerClass(AggregateCombiner.class); conf.setReducerClass(AggregateAndRecommendReducer.class); conf.setInputFormat(SequenceFileInputFormat.class); // conf.setOutputFormat(DBOutputFormat.class); JobClient.runJob(conf); }
public static void main(String[] args) throws Exception { JobConf conf = new JobConf(Main.class); conf.setJobName("feels-analysis"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(TheOutputClass.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setNumReduceTasks(1); conf.setInputFormat(CSVTextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); // TODO: determine whether we need extra output MultipleOutputs.addMultiNamedOutput( conf, SECOND_OUTPUT, TextOutputFormat.class, Text.class, TheOutputClass.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); }
public int run(String[] args) throws Exception { String driverClassName = "org.hsqldb.jdbcDriver"; String url = "jdbc:hsqldb:hsql://localhost/URLAccess"; if (args.length > 1) { driverClassName = args[0]; url = args[1]; } initialize(driverClassName, url); JobConf job = new JobConf(getConf(), DBCountPageView.class); job.setJobName("Count Pageviews of URLs"); job.setMapperClass(PageviewMapper.class); job.setCombinerClass(LongSumReducer.class); job.setReducerClass(PageviewReducer.class); DBConfiguration.configureDB(job, driverClassName, url); DBInputFormat.setInput(job, AccessRecord.class, "Access", null, "url", AccessFieldNames); DBOutputFormat.setOutput(job, "Pageview", PageviewFieldNames); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); job.setOutputKeyClass(PageviewRecord.class); job.setOutputValueClass(NullWritable.class); try { JobClient.runJob(job); boolean correct = verify(); if (!correct) throw new RuntimeException("Evaluation was not correct!"); } finally { shutdown(); } return 0; }
public static void main(String[] args) throws IOException { String inpath = "hdfs://localhost:9000/user/hdfs/in/"; String outpath = "hdfs://localhost:9000/user/hdfs/pv_out/"; JobConf conf = new JobConf(StatPV.class); conf.setJobName("StatPV"); conf.setMapperClass(PvMapper.class); conf.setCombinerClass(PvReducer.class); conf.setReducerClass(PvReducer.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapOutputKeyClass(Text.class); conf.setMapOutputValueClass(IntWritable.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(inpath)); FileOutputFormat.setOutputPath(conf, new Path(outpath)); JobClient.runJob(conf); System.out.println("finish"); System.exit(0); }
@Override public int run(String[] args) throws IOException { OptionParser p = new OptionParser(); OptionSpec<String> maxwiOpt = p.accepts(maxwiOptName, "location of maxWi map file (HDFS) REQUIRED") .withRequiredArg() .ofType(String.class); OptionSpec<Float> thresholdOpt = p.accepts(thresholdOptName, "similarity threshold") .withRequiredArg() .ofType(Float.class) .defaultsTo(DEFAULT_THRESHOLD); OptionSpec<Integer> stripesOpt = p.accepts(stripesOptName, "number of stripes to divide the similarity matrix") .withRequiredArg() .ofType(Integer.class) .defaultsTo(1); OptionSpec<Integer> spreadOpt = p.accepts(spreadOptName, "number of reducers per stripe") .withRequiredArg() .ofType(Integer.class) .defaultsTo(DEFAULT_SPREAD); OptionSpec<Integer> factorOpt = p.accepts(factorOptName, "number of mappers per reducer") .withRequiredArg() .ofType(Integer.class) .defaultsTo(DEFAULT_FACTOR); OptionSpec<Integer> maxVectorIDOpt = p.accepts(maxVectorIDOptName, "maximum vector ID").withRequiredArg().ofType(Integer.class); p.acceptsAll(Arrays.asList("h", "?"), "show help"); OptionSet options = parseOptions(p, args); // to distinguish indexes built in successive runs DateFormat df = new SimpleDateFormat("yyyyMMdd-HHmmss"); Date date = new Date(); float threshold = options.valueOf(thresholdOpt); // threshold if (threshold < 0 || threshold >= 1) { System.err.println(thresholdOptName + " should be between 0 and 1"); System.exit(1); } int numStripes = options.valueOf(stripesOpt); // number of stripes if (numStripes < 1) { System.err.println(stripesOptName + " should be > 0"); System.exit(1); } // MapReduce parameters int spread = options.valueOf(spreadOpt); // how many reducers per stripe if (spread < 1) { System.err.println(spreadOptName + " should be > 0"); System.exit(1); } int factor = options.valueOf(factorOpt); // how many mappers per reducer if (factor < 1) { System.err.println(factorOptName + " should be > 0"); System.exit(1); } int maxKey = 0; if (options.has(maxVectorIDOpt)) { maxKey = options.valueOf(maxVectorIDOpt); // maximum value of the vector ID if (maxKey < 1) { System.err.println(maxVectorIDOptName + " should be > 0"); System.exit(1); } } int numReducers = GenericKey.StripePartitioner.numReducers(numStripes, spread); int numMappers = numReducers * factor; int numBuckets = numMappers; // pick the file with max weights from command line String maxWiDir = options.valueOf(maxwiOpt); List<String> nonOptArgs = options.nonOptionArguments(); LOG.info("Threshold set to " + threshold); LOG.info( String.format( "Buckets: %1$-10s Factor: %2$-10s Stripes: %3$-10s Spread: %4$-10s Reducers: %5$-10s", numBuckets, factor, numStripes, spread, numReducers)); // start building the jobs JobConf conf1 = new JobConf(getConf(), Similarity.class); conf1.setFloat(PARAM_APS_THRESHOLD, threshold); conf1.setInt(PARAM_APS_STRIPES, numStripes); DistributedCache.addCacheFile(URI.create(maxWiDir), conf1); Path inputPath = new Path(nonOptArgs.get(0)); Path indexPath = new Path( nonOptArgs.get(0) + "-index-" + threshold + "-s" + numStripes + "_" + df.format(date)); // index filtering pruned nested directory Path indexOnlyPath = new Path(indexPath, "part*"); Path outputPath = new Path(nonOptArgs.get(1) + "-" + threshold + "-s" + numStripes); FileInputFormat.setInputPaths(conf1, inputPath); FileOutputFormat.setOutputPath(conf1, indexPath); conf1.setInputFormat(SequenceFileInputFormat.class); conf1.setOutputFormat(SequenceFileOutputFormat.class); conf1.setMapOutputKeyClass(LongWritable.class); conf1.setMapOutputValueClass(IndexItem.class); conf1.setOutputKeyClass(LongWritable.class); conf1.setOutputValueClass(IndexItemArrayWritable.class); conf1.setMapperClass(IndexerMapper.class); conf1.setReducerClass(IndexerReducer.class); // assuming input is sorted according to the key (vectorID) so that the // part files are locally sorted MultipleOutputs.addNamedOutput( conf1, PRUNED, SequenceFileOutputFormat.class, IntWritable.class, VectorComponentArrayWritable.class); // remove the stuff we added from the job name conf1.set( "mapred.job.name", "APS-" + indexPath.getName().substring(0, indexPath.getName().length() - 16)); conf1.setNumTasksToExecutePerJvm(-1); // JVM reuse conf1.setSpeculativeExecution(false); conf1.setCompressMapOutput(true); // hash the posting lists in different buckets to distribute the load conf1.setNumReduceTasks(numBuckets); RunningJob job1 = JobClient.runJob(conf1); // part 2 JobConf conf2 = new JobConf(getConf(), Similarity.class); if (numStripes > 0) FileUtils.mergeRestFile(conf2, indexPath, PRUNED, INDEX_INTERVAL); MultipleInputs.addInputPath( conf2, indexOnlyPath, SequenceFileInputFormat.class, SimilarityMapperIndex.class); MultipleInputs.addInputPath( conf2, inputPath, SequenceFileInputFormat.class, SimilarityMapperInput.class); FileOutputFormat.setOutputPath(conf2, outputPath); conf2.setCombinerClass(SimilarityCombiner.class); conf2.setReducerClass(SimilarityReducer.class); conf2.setPartitionerClass(GenericKey.StripePartitioner.class); conf2.setOutputKeyComparatorClass(GenericKey.Comparator.class); conf2.setOutputValueGroupingComparator(GenericKey.PrimaryComparator.class); conf2.setMapOutputKeyClass(GenericKey.class); conf2.setMapOutputValueClass(GenericValue.class); conf2.setOutputKeyClass(VectorPair.class); conf2.setOutputValueClass(NullWritable.class); Counter numDocs = job1.getCounters() .findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS"); maxKey = maxKey > 0 ? maxKey : (int) numDocs.getValue(); LOG.info("Setting max key value in input to " + maxKey); conf2.setInt(PARAM_APS_MAXKEY, maxKey); conf2.setInt(PARAM_APS_STRIPES, numStripes); conf2.setFloat(PARAM_APS_THRESHOLD, threshold); conf2.setInt(PARAM_APS_REDUCER_PER_STRIPE, spread); conf2.set("mapred.job.name", "APS-" + outputPath.getName()); conf2.setNumTasksToExecutePerJvm(-1); // JVM reuse conf2.setSpeculativeExecution(false); conf2.setCompressMapOutput(true); conf2.setNumReduceTasks(numReducers); JobClient.runJob(conf2); return 0; }
public static void main(String[] args) throws IOException { JobConf lp = new JobConf(L4.class); lp.setJobName("Load Page Views"); lp.setInputFormat(TextInputFormat.class); lp.setOutputKeyClass(Text.class); lp.setOutputValueClass(Text.class); lp.setMapperClass(ReadPageViews.class); lp.setCombinerClass(Combiner.class); lp.setReducerClass(Group.class); Properties props = System.getProperties(); String dataDir = props.getProperty("PIGMIX_DIR", "/user/pig/tests/data/pigmix"); for (Map.Entry<Object, Object> entry : props.entrySet()) { lp.set((String) entry.getKey(), (String) entry.getValue()); } FileInputFormat.addInputPath(lp, new Path(dataDir, "page_views")); FileOutputFormat.setOutputPath( lp, new Path("/user/" + System.getProperty("user.name") + "/L4out")); lp.setNumReduceTasks(40); Job group = new Job(lp); JobControl jc = new JobControl("L4 join"); jc.addJob(group); new Thread(jc).start(); int i = 0; while (!jc.allFinished()) { ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } break; } try { Thread.sleep(5000); } catch (InterruptedException e) { } if (i % 10000 == 0) { System.out.println("Running jobs"); ArrayList<Job> running = jc.getRunningJobs(); if (running != null && running.size() > 0) { for (Job r : running) { System.out.println(r.getJobName()); } } System.out.println("Ready jobs"); ArrayList<Job> ready = jc.getReadyJobs(); if (ready != null && ready.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Waiting jobs"); ArrayList<Job> waiting = jc.getWaitingJobs(); if (waiting != null && waiting.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Successful jobs"); ArrayList<Job> success = jc.getSuccessfulJobs(); if (success != null && success.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } } i++; } ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } } jc.stop(); }
/** * Starts a Rand MapReduce job which will produce one or more random objects. * * @param numRows number of rows for each random object * @param numCols number of columns for each random object * @param blockRowSize number of rows in a block for each random object * @param blockColSize number of columns in a block for each random object * @param minValue minimum of the random values for each random object * @param maxValue maximum of the random values for each random object * @param sparsity sparsity for each random object * @param pdf probability density function for each random object * @param replication file replication * @param inputs input file for each random object * @param outputs output file for each random object * @param outputInfos output information for each random object * @param instructionsInMapper instruction for each random object * @param resultIndexes result indexes for each random object * @return matrix characteristics for each random object * @throws Exception if an error occurred in the MapReduce phase */ public static JobReturn runJob( MRJobInstruction inst, String[] dataGenInstructions, String instructionsInMapper, String aggInstructionsInReducer, String otherInstructionsInReducer, int numReducers, int replication, byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs, OutputInfo[] outputInfos) throws Exception { JobConf job = new JobConf(DataGenMR.class); job.setJobName("DataGen-MR"); // whether use block representation or cell representation MRJobConfiguration.setMatrixValueClass(job, true); byte[] realIndexes = new byte[dataGenInstructions.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b; String[] inputs = new String[dataGenInstructions.length]; InputInfo[] inputInfos = new InputInfo[dataGenInstructions.length]; long[] rlens = new long[dataGenInstructions.length]; long[] clens = new long[dataGenInstructions.length]; int[] brlens = new int[dataGenInstructions.length]; int[] bclens = new int[dataGenInstructions.length]; FileSystem fs = FileSystem.get(job); String dataGenInsStr = ""; int numblocks = 0; int maxbrlen = -1, maxbclen = -1; double maxsparsity = -1; for (int i = 0; i < dataGenInstructions.length; i++) { dataGenInsStr = dataGenInsStr + Lop.INSTRUCTION_DELIMITOR + dataGenInstructions[i]; MRInstruction mrins = MRInstructionParser.parseSingleInstruction(dataGenInstructions[i]); MRINSTRUCTION_TYPE mrtype = mrins.getMRInstructionType(); DataGenMRInstruction genInst = (DataGenMRInstruction) mrins; rlens[i] = genInst.getRows(); clens[i] = genInst.getCols(); brlens[i] = genInst.getRowsInBlock(); bclens[i] = genInst.getColsInBlock(); maxbrlen = Math.max(maxbrlen, brlens[i]); maxbclen = Math.max(maxbclen, bclens[i]); if (mrtype == MRINSTRUCTION_TYPE.Rand) { RandInstruction randInst = (RandInstruction) mrins; inputs[i] = LibMatrixDatagen.generateUniqueSeedPath(genInst.getBaseDir()); maxsparsity = Math.max(maxsparsity, randInst.getSparsity()); FSDataOutputStream fsOut = fs.create(new Path(inputs[i])); PrintWriter pw = new PrintWriter(fsOut); // for obj reuse and preventing repeated buffer re-allocations StringBuilder sb = new StringBuilder(); // seed generation Well1024a bigrand = LibMatrixDatagen.setupSeedsForRand(randInst.getSeed()); long[] nnz = LibMatrixDatagen.computeNNZperBlock( rlens[i], clens[i], brlens[i], bclens[i], randInst.getSparsity()); int nnzIx = 0; for (long r = 0; r < rlens[i]; r += brlens[i]) { long curBlockRowSize = Math.min(brlens[i], (rlens[i] - r)); for (long c = 0; c < clens[i]; c += bclens[i]) { long curBlockColSize = Math.min(bclens[i], (clens[i] - c)); sb.append((r / brlens[i]) + 1); sb.append(','); sb.append((c / bclens[i]) + 1); sb.append(','); sb.append(curBlockRowSize); sb.append(','); sb.append(curBlockColSize); sb.append(','); sb.append(nnz[nnzIx++]); sb.append(','); sb.append(bigrand.nextLong()); pw.println(sb.toString()); sb.setLength(0); numblocks++; } } pw.close(); fsOut.close(); inputInfos[i] = InputInfo.TextCellInputInfo; } else if (mrtype == MRINSTRUCTION_TYPE.Seq) { SeqInstruction seqInst = (SeqInstruction) mrins; inputs[i] = genInst.getBaseDir() + System.currentTimeMillis() + ".seqinput"; maxsparsity = 1.0; // always dense double from = seqInst.fromValue; double to = seqInst.toValue; double incr = seqInst.incrValue; // handle default 1 to -1 for special case of from>to incr = LibMatrixDatagen.updateSeqIncr(from, to, incr); // Correctness checks on (from, to, incr) boolean neg = (from > to); if (incr == 0) throw new DMLRuntimeException("Invalid value for \"increment\" in seq()."); if (neg != (incr < 0)) throw new DMLRuntimeException("Wrong sign for the increment in a call to seq()"); // Compute the number of rows in the sequence long numrows = 1 + (long) Math.floor((to - from) / incr); if (rlens[i] > 0) { if (numrows != rlens[i]) throw new DMLRuntimeException( "Unexpected error while processing sequence instruction. Expected number of rows does not match given number: " + rlens[i] + " != " + numrows); } else { rlens[i] = numrows; } if (clens[i] > 0 && clens[i] != 1) throw new DMLRuntimeException( "Unexpected error while processing sequence instruction. Number of columns (" + clens[i] + ") must be equal to 1."); else clens[i] = 1; FSDataOutputStream fsOut = fs.create(new Path(inputs[i])); PrintWriter pw = new PrintWriter(fsOut); StringBuilder sb = new StringBuilder(); double temp = from; double block_from, block_to; for (long r = 0; r < rlens[i]; r += brlens[i]) { long curBlockRowSize = Math.min(brlens[i], (rlens[i] - r)); // block (bid_i,bid_j) generates a sequence from the interval [block_from, block_to] // (inclusive of both end points of the interval) long bid_i = ((r / brlens[i]) + 1); long bid_j = 1; block_from = temp; block_to = temp + (curBlockRowSize - 1) * incr; temp = block_to + incr; // next block starts from here sb.append(bid_i); sb.append(','); sb.append(bid_j); sb.append(','); /* // Need not include block size while generating seq() sb.append(curBlockRowSize); sb.append(','); sb.append(1); sb.append(',');*/ sb.append(block_from); sb.append(','); sb.append(block_to); sb.append(','); sb.append(incr); pw.println(sb.toString()); // System.out.println("MapTask " + r + ": " + sb.toString()); sb.setLength(0); numblocks++; } pw.close(); fsOut.close(); inputInfos[i] = InputInfo.TextCellInputInfo; } else { throw new DMLRuntimeException("Unexpected Data Generation Instruction Type: " + mrtype); } } dataGenInsStr = dataGenInsStr.substring(1); // remove the first "," RunningJob runjob; MatrixCharacteristics[] stats; try { // set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens); // set up the input files and their format information MRJobConfiguration.setUpMultipleInputs( job, realIndexes, inputs, inputInfos, brlens, bclens, false, ConvertTarget.BLOCK); // set up the dimensions of input matrices MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens); MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix); // set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens); // set up the rand Instructions MRJobConfiguration.setRandInstructions(job, dataGenInsStr); // set up unary instructions that will perform in the mapper MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper); // set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer); // set up the instructions that will happen in the reducer, after the aggregation instrucions MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer); // set up the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); // set up map/reduce memory configurations (if in AM context) DMLConfig config = ConfigurationManager.getDMLConfig(); DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config); // set up custom map/reduce configurations MRJobConfiguration.setupCustomMRConfigurations(job, config); // determine degree of parallelism (nmappers: 1<=n<=capacity) // TODO use maxsparsity whenever we have a way of generating sparse rand data int capacity = InfrastructureAnalyzer.getRemoteParallelMapTasks(); long dfsblocksize = InfrastructureAnalyzer.getHDFSBlockSize(); // correction max number of mappers on yarn clusters if (InfrastructureAnalyzer.isYarnEnabled()) capacity = (int) Math.max(capacity, YarnClusterAnalyzer.getNumCores()); int nmapers = Math.max( Math.min((int) (8 * maxbrlen * maxbclen * (long) numblocks / dfsblocksize), capacity), 1); job.setNumMapTasks(nmapers); // set up what matrices are needed to pass from the mapper to reducer HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper( job, realIndexes, dataGenInsStr, instructionsInMapper, null, aggInstructionsInReducer, otherInstructionsInReducer, resultIndexes); MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics( job, realIndexes, dataGenInsStr, instructionsInMapper, null, aggInstructionsInReducer, null, otherInstructionsInReducer, resultIndexes, mapoutputIndexes, false); stats = ret.stats; // set up the number of reducers MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers); // print the complete MRJob instruction if (LOG.isTraceEnabled()) inst.printCompleteMRJobInstruction(stats); // Update resultDimsUnknown based on computed "stats" byte[] resultDimsUnknown = new byte[resultIndexes.length]; for (int i = 0; i < resultIndexes.length; i++) { if (stats[i].getRows() == -1 || stats[i].getCols() == -1) { resultDimsUnknown[i] = (byte) 1; } else { resultDimsUnknown[i] = (byte) 0; } } boolean mayContainCtable = instructionsInMapper.contains("ctabletransform") || instructionsInMapper.contains("groupedagg"); // set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs( job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true, mayContainCtable); // configure mapper and the mapper output key value pairs job.setMapperClass(DataGenMapper.class); if (numReducers == 0) { job.setMapOutputKeyClass(Writable.class); job.setMapOutputValueClass(Writable.class); } else { job.setMapOutputKeyClass(MatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixBlock.class); } // set up combiner if (numReducers != 0 && aggInstructionsInReducer != null && !aggInstructionsInReducer.isEmpty()) job.setCombinerClass(GMRCombiner.class); // configure reducer job.setReducerClass(GMRReducer.class); // job.setReducerClass(PassThroughReducer.class); // By default, the job executes in "cluster" mode. // Determine if we can optimize and run it in "local" mode. MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length]; for (int i = 0; i < inputs.length; i++) { inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]); } // set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); runjob = JobClient.runJob(job); /* Process different counters */ Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS); for (int i = 0; i < resultIndexes.length; i++) { // number of non-zeros stats[i].setNonZeros(group.getCounter(Integer.toString(i))); } String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile"; stats = MapReduceTool.processDimsFiles(dir, stats); MapReduceTool.deleteFileIfExistOnHDFS(dir); } finally { for (String input : inputs) MapReduceTool.deleteFileIfExistOnHDFS(new Path(input), job); } return new JobReturn(stats, outputInfos, runjob.isSuccessful()); }
/** * Create an Aggregate based map/reduce job. * * @param args the arguments used for job creation. Generic hadoop arguments are accepted. * @return a JobConf object ready for submission. * @throws IOException * @see GenericOptionsParser */ public static JobConf createValueAggregatorJob(String args[]) throws IOException { Configuration conf = new Configuration(); GenericOptionsParser genericParser = new GenericOptionsParser(conf, args); args = genericParser.getRemainingArgs(); if (args.length < 2) { System.out.println( "usage: inputDirs outDir " + "[numOfReducer [textinputformat|seq [specfile [jobName]]]]"); GenericOptionsParser.printGenericCommandUsage(System.out); System.exit(1); } String inputDir = args[0]; String outputDir = args[1]; int numOfReducers = 1; if (args.length > 2) { numOfReducers = Integer.parseInt(args[2]); } Class<? extends InputFormat> theInputFormat = TextInputFormat.class; if (args.length > 3 && args[3].compareToIgnoreCase("textinputformat") == 0) { theInputFormat = TextInputFormat.class; } else { theInputFormat = SequenceFileInputFormat.class; } Path specFile = null; if (args.length > 4) { specFile = new Path(args[4]); } String jobName = ""; if (args.length > 5) { jobName = args[5]; } JobConf theJob = new JobConf(conf); if (specFile != null) { theJob.addResource(specFile); } String userJarFile = theJob.get("user.jar.file"); if (userJarFile == null) { theJob.setJarByClass(ValueAggregator.class); } else { theJob.setJar(userJarFile); } theJob.setJobName("ValueAggregatorJob: " + jobName); FileInputFormat.addInputPaths(theJob, inputDir); theJob.setInputFormat(theInputFormat); theJob.setMapperClass(ValueAggregatorMapper.class); FileOutputFormat.setOutputPath(theJob, new Path(outputDir)); theJob.setOutputFormat(TextOutputFormat.class); theJob.setMapOutputKeyClass(Text.class); theJob.setMapOutputValueClass(Text.class); theJob.setOutputKeyClass(Text.class); theJob.setOutputValueClass(Text.class); theJob.setReducerClass(ValueAggregatorReducer.class); theJob.setCombinerClass(ValueAggregatorCombiner.class); theJob.setNumMapTasks(1); theJob.setNumReduceTasks(numOfReducers); return theJob; }
public static void main(String[] args) throws Exception { String inputPath = args[0]; String outputPath = args[1]; int specIteration = Integer.parseInt(args[2]); // set number of reducers int numReducers = 2 * 15; // step 1 JobConf conf0 = new JobConf(Hashmin.class); conf0.setJobName("hashmin Step1"); conf0.setOutputKeyClass(IntWritable.class); conf0.setOutputValueClass(Text.class); conf0.setMapOutputKeyClass(IntWritable.class); conf0.setMapOutputValueClass(IntWritable.class); conf0.setMapperClass(FirstMapper.class); conf0.setReducerClass(FirstReducer.class); conf0.setInputFormat(TextInputFormat.class); conf0.setOutputFormat(TextOutputFormat.class); FileInputFormat.addInputPath(conf0, new Path(args[0])); FileOutputFormat.setOutputPath(conf0, new Path(args[1] + "/i-1")); conf0.setNumReduceTasks(numReducers); JobClient.runJob(conf0); // loop JobConf conf1 = new JobConf(); conf1.setOutputKeyClass(IntWritable.class); conf1.setOutputValueClass(IntWritable.class); conf1.setMapOutputKeyClass(IntWritable.class); conf1.setMapOutputValueClass(Text.class); conf1.setMapperClass(JoinMapper.class); conf1.setReducerClass(JoinReducer.class); conf1.setInputFormat(TextInputFormat.class); conf1.setOutputFormat(TextOutputFormat.class); JobConf conf2 = new JobConf(); conf2.setOutputKeyClass(IntWritable.class); conf2.setOutputValueClass(Text.class); conf2.setMapOutputKeyClass(IntWritable.class); conf2.setMapOutputValueClass(Text.class); conf2.setMapperClass(AggMapper.class); conf2.setReducerClass(AggReducer.class); // combiner conf2.setCombinerClass(AggCombiner.class); conf2.setInputFormat(TextInputFormat.class); conf2.setOutputFormat(TextOutputFormat.class); JobConf conf = new JobConf(Hashmin.class); conf.setJobName("Hashmin"); conf.setLoopInputOutput(HashminLoopInputOutput.class); // testing // conf.setLoopInputOutput(RankLoopInputOutputReuse.class); conf.setLoopReduceCacheSwitch(HashminReduceCacheSwitch.class); conf.setLoopReduceCacheFilter(HashminReduceCacheFilter.class); conf.setLoopStepHook(HashminStepHook.class); conf.setInputPath(inputPath); conf.setOutputPath(outputPath); conf.setStepConf(0, conf1); conf.setStepConf(1, conf2); conf.setIterative(true); conf.setNumIterations(specIteration); conf.setNumReduceTasks(numReducers); JobClient.runJob(conf); }
@Override protected void beforeRun(String[] args, JobConf config) { config.setCombinerClass(LongSumReducer.class); }
static void checkRecords(Configuration defaults, Path sortInput, Path sortOutput) throws IOException { FileSystem inputfs = sortInput.getFileSystem(defaults); FileSystem outputfs = sortOutput.getFileSystem(defaults); FileSystem defaultfs = FileSystem.get(defaults); JobConf jobConf = new JobConf(defaults, RecordStatsChecker.class); jobConf.setJobName("sortvalidate-recordstats-checker"); int noSortReduceTasks = outputfs.listStatus(sortOutput, sortPathsFilter).length; jobConf.setInt("sortvalidate.sort.reduce.tasks", noSortReduceTasks); int noSortInputpaths = inputfs.listStatus(sortInput).length; jobConf.setInputFormat(NonSplitableSequenceFileInputFormat.class); jobConf.setOutputFormat(SequenceFileOutputFormat.class); jobConf.setOutputKeyClass(IntWritable.class); jobConf.setOutputValueClass(RecordStatsChecker.RecordStatsWritable.class); jobConf.setMapperClass(Map.class); jobConf.setCombinerClass(Reduce.class); jobConf.setReducerClass(Reduce.class); jobConf.setNumMapTasks(noSortReduceTasks); jobConf.setNumReduceTasks(1); FileInputFormat.setInputPaths(jobConf, sortInput); FileInputFormat.addInputPath(jobConf, sortOutput); Path outputPath = new Path("/tmp/sortvalidate/recordstatschecker"); if (defaultfs.exists(outputPath)) { defaultfs.delete(outputPath, true); } FileOutputFormat.setOutputPath(jobConf, outputPath); // Uncomment to run locally in a single process // job_conf.set("mapred.job.tracker", "local"); Path[] inputPaths = FileInputFormat.getInputPaths(jobConf); System.out.println( "\nSortValidator.RecordStatsChecker: Validate sort " + "from " + inputPaths[0] + " (" + noSortInputpaths + " files), " + inputPaths[1] + " (" + noSortReduceTasks + " files) into " + FileOutputFormat.getOutputPath(jobConf) + " with 1 reducer."); Date startTime = new Date(); System.out.println("Job started: " + startTime); JobClient.runJob(jobConf); Date end_time = new Date(); System.out.println("Job ended: " + end_time); System.out.println( "The job took " + (end_time.getTime() - startTime.getTime()) / 1000 + " seconds."); // Check to ensure that the statistics of the // framework's sort-input and sort-output match SequenceFile.Reader stats = new SequenceFile.Reader(defaultfs, new Path(outputPath, "part-00000"), defaults); IntWritable k1 = new IntWritable(); IntWritable k2 = new IntWritable(); RecordStatsWritable v1 = new RecordStatsWritable(); RecordStatsWritable v2 = new RecordStatsWritable(); if (!stats.next(k1, v1)) { throw new IOException("Failed to read record #1 from reduce's output"); } if (!stats.next(k2, v2)) { throw new IOException("Failed to read record #2 from reduce's output"); } if ((v1.getBytes() != v2.getBytes()) || (v1.getRecords() != v2.getRecords()) || v1.getChecksum() != v2.getChecksum()) { throw new IOException( "(" + v1.getBytes() + ", " + v1.getRecords() + ", " + v1.getChecksum() + ") v/s (" + v2.getBytes() + ", " + v2.getRecords() + ", " + v2.getChecksum() + ")"); } }