private static String[] runTests( int numHosts, int slotsPerHost, int parallelism, TestLocatableInputSplit[] splits) throws Exception { AbstractJobVertex vertex = new AbstractJobVertex("test vertex"); vertex.setParallelism(parallelism); vertex.setInvokableClass(DummyInvokable.class); vertex.setInputSplitSource(new TestInputSplitSource(splits)); JobGraph jobGraph = new JobGraph("test job", vertex); ExecutionGraph eg = new ExecutionGraph( jobGraph.getJobID(), jobGraph.getName(), jobGraph.getJobConfiguration(), TIMEOUT); eg.setQueuedSchedulingAllowed(false); eg.attachJobGraph(jobGraph.getVerticesSortedTopologicallyFromSources()); Scheduler scheduler = getScheduler(numHosts, slotsPerHost); eg.scheduleForExecution(scheduler); ExecutionVertex[] tasks = eg.getVerticesTopologically().iterator().next().getTaskVertices(); assertEquals(parallelism, tasks.length); String[] hostsForTasks = new String[parallelism]; for (int i = 0; i < parallelism; i++) { hostsForTasks[i] = tasks[i].getCurrentAssignedResourceLocation().getHostname(); } return hostsForTasks; }
/** * Parameter {@code uploadedJarLocation} is actually used to point to the local jar, because Flink * does not support uploading a jar file before hand. Jar files are always uploaded directly when * a program is submitted. */ public void submitTopologyWithOpts( final String name, final String uploadedJarLocation, final FlinkTopology topology) throws AlreadyAliveException, InvalidTopologyException { if (this.getTopologyJobId(name) != null) { throw new AlreadyAliveException(); } final URI uploadedJarUri; final URL uploadedJarUrl; try { uploadedJarUri = new File(uploadedJarLocation).getAbsoluteFile().toURI(); uploadedJarUrl = uploadedJarUri.toURL(); JobWithJars.checkJarFile(uploadedJarUrl); } catch (final IOException e) { throw new RuntimeException("Problem with jar file " + uploadedJarLocation, e); } try { FlinkClient.addStormConfigToTopology(topology, conf); } catch (ClassNotFoundException e) { LOG.error("Could not register class for Kryo serialization.", e); throw new InvalidTopologyException("Could not register class for Kryo serialization."); } final StreamGraph streamGraph = topology.getExecutionEnvironment().getStreamGraph(); streamGraph.setJobName(name); final JobGraph jobGraph = streamGraph.getJobGraph(); jobGraph.addJar(new Path(uploadedJarUri)); final Configuration configuration = jobGraph.getJobConfiguration(); configuration.setString(ConfigConstants.JOB_MANAGER_IPC_ADDRESS_KEY, jobManagerHost); configuration.setInteger(ConfigConstants.JOB_MANAGER_IPC_PORT_KEY, jobManagerPort); final Client client; try { client = new Client(configuration); } catch (IOException e) { throw new RuntimeException("Could not establish a connection to the job manager", e); } try { ClassLoader classLoader = JobWithJars.buildUserCodeClassLoader( Lists.newArrayList(uploadedJarUrl), Collections.<URL>emptyList(), this.getClass().getClassLoader()); client.runDetached(jobGraph, classLoader); } catch (final ProgramInvocationException e) { throw new RuntimeException("Cannot execute job due to ProgramInvocationException", e); } }
@Test public void testMultipleInstancesPerHost() { TestLocatableInputSplit[] splits = new TestLocatableInputSplit[] { new TestLocatableInputSplit(1, "host1"), new TestLocatableInputSplit(2, "host1"), new TestLocatableInputSplit(3, "host2"), new TestLocatableInputSplit(4, "host2"), new TestLocatableInputSplit(5, "host3"), new TestLocatableInputSplit(6, "host3") }; try { AbstractJobVertex vertex = new AbstractJobVertex("test vertex"); vertex.setParallelism(6); vertex.setInvokableClass(DummyInvokable.class); vertex.setInputSplitSource(new TestInputSplitSource(splits)); JobGraph jobGraph = new JobGraph("test job", vertex); ExecutionGraph eg = new ExecutionGraph( jobGraph.getJobID(), jobGraph.getName(), jobGraph.getJobConfiguration(), TIMEOUT); eg.attachJobGraph(jobGraph.getVerticesSortedTopologicallyFromSources()); eg.setQueuedSchedulingAllowed(false); // create a scheduler with 6 instances where always two are on the same host Scheduler scheduler = new Scheduler(); Instance i1 = getInstance(new byte[] {10, 0, 1, 1}, 12345, "host1", 1); Instance i2 = getInstance(new byte[] {10, 0, 1, 1}, 12346, "host1", 1); Instance i3 = getInstance(new byte[] {10, 0, 1, 2}, 12345, "host2", 1); Instance i4 = getInstance(new byte[] {10, 0, 1, 2}, 12346, "host2", 1); Instance i5 = getInstance(new byte[] {10, 0, 1, 3}, 12345, "host3", 1); Instance i6 = getInstance(new byte[] {10, 0, 1, 3}, 12346, "host4", 1); scheduler.newInstanceAvailable(i1); scheduler.newInstanceAvailable(i2); scheduler.newInstanceAvailable(i3); scheduler.newInstanceAvailable(i4); scheduler.newInstanceAvailable(i5); scheduler.newInstanceAvailable(i6); eg.scheduleForExecution(scheduler); ExecutionVertex[] tasks = eg.getVerticesTopologically().iterator().next().getTaskVertices(); assertEquals(6, tasks.length); Instance taskInstance1 = tasks[0].getCurrentAssignedResource().getInstance(); Instance taskInstance2 = tasks[1].getCurrentAssignedResource().getInstance(); Instance taskInstance3 = tasks[2].getCurrentAssignedResource().getInstance(); Instance taskInstance4 = tasks[3].getCurrentAssignedResource().getInstance(); Instance taskInstance5 = tasks[4].getCurrentAssignedResource().getInstance(); Instance taskInstance6 = tasks[5].getCurrentAssignedResource().getInstance(); assertTrue(taskInstance1 == i1 || taskInstance1 == i2); assertTrue(taskInstance2 == i1 || taskInstance2 == i2); assertTrue(taskInstance3 == i3 || taskInstance3 == i4); assertTrue(taskInstance4 == i3 || taskInstance4 == i4); assertTrue(taskInstance5 == i5 || taskInstance5 == i6); assertTrue(taskInstance6 == i5 || taskInstance6 == i6); } catch (Exception e) { e.printStackTrace(); fail(e.getMessage()); } }