/** * Get an upper bound of the fitted harmonic amplitude. * * @return upper bound of the fitted harmonic amplitude */ public double getHarmonicAmplitude() { double amplitude = 0; for (int i = 0; i < pulsations.length; ++i) { amplitude += FastMath.hypot(fitted[secularDegree + 2 * i + 1], fitted[secularDegree + 2 * i + 2]); } return amplitude; }
/** Контрольная точка. */ private ControlPoint( final double latDeg, final double lonDeg, @NotNull final Observation normal, @NotNull final Observation geodetic, @NotNull final GeodeticToDoubleFunction interpolator) { super(latDeg, lonDeg); this.interpolator = interpolator; geometric = new Observation( geodetic.value() - normal.value(), FastMath.hypot(geodetic.error(), normal.error())); }
@Override public Observation signal() { return new Observation( geometric.value() - model().value(), FastMath.hypot(geometric.error(), model().error())); }
/** * Calculates the compact Singular Value Decomposition of the given matrix. * * @param matrix Matrix to decompose. */ public SingularValueDecomposition(final RealMatrix matrix) { final double[][] A; // "m" is always the largest dimension. if (matrix.getRowDimension() < matrix.getColumnDimension()) { transposed = true; A = matrix.transpose().getData(); m = matrix.getColumnDimension(); n = matrix.getRowDimension(); } else { transposed = false; A = matrix.getData(); m = matrix.getRowDimension(); n = matrix.getColumnDimension(); } singularValues = new double[n]; final double[][] U = new double[m][n]; final double[][] V = new double[n][n]; final double[] e = new double[n]; final double[] work = new double[m]; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. final int nct = FastMath.min(m - 1, n); final int nrt = FastMath.max(0, n - 2); for (int k = 0; k < FastMath.max(nct, nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. singularValues[k] = 0; for (int i = k; i < m; i++) { singularValues[k] = FastMath.hypot(singularValues[k], A[i][k]); } if (singularValues[k] != 0) { if (A[k][k] < 0) { singularValues[k] = -singularValues[k]; } for (int i = k; i < m; i++) { A[i][k] /= singularValues[k]; } A[k][k] += 1; } singularValues[k] = -singularValues[k]; } for (int j = k + 1; j < n; j++) { if (k < nct && singularValues[k] != 0) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) { t += A[i][k] * A[i][j]; } t = -t / A[k][k]; for (int i = k; i < m; i++) { A[i][j] += t * A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (k < nct) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k + 1; i < n; i++) { e[k] = FastMath.hypot(e[k], e[i]); } if (e[k] != 0) { if (e[k + 1] < 0) { e[k] = -e[k]; } for (int i = k + 1; i < n; i++) { e[i] /= e[k]; } e[k + 1] += 1; } e[k] = -e[k]; if (k + 1 < m && e[k] != 0) { // Apply the transformation. for (int i = k + 1; i < m; i++) { work[i] = 0; } for (int j = k + 1; j < n; j++) { for (int i = k + 1; i < m; i++) { work[i] += e[j] * A[i][j]; } } for (int j = k + 1; j < n; j++) { final double t = -e[j] / e[k + 1]; for (int i = k + 1; i < m; i++) { A[i][j] += t * work[i]; } } } // Place the transformation in V for subsequent // back multiplication. for (int i = k + 1; i < n; i++) { V[i][k] = e[i]; } } } // Set up the final bidiagonal matrix or order p. int p = n; if (nct < n) { singularValues[nct] = A[nct][nct]; } if (m < p) { singularValues[p - 1] = 0; } if (nrt + 1 < p) { e[nrt] = A[nrt][p - 1]; } e[p - 1] = 0; // Generate U. for (int j = nct; j < n; j++) { for (int i = 0; i < m; i++) { U[i][j] = 0; } U[j][j] = 1; } for (int k = nct - 1; k >= 0; k--) { if (singularValues[k] != 0) { for (int j = k + 1; j < n; j++) { double t = 0; for (int i = k; i < m; i++) { t += U[i][k] * U[i][j]; } t = -t / U[k][k]; for (int i = k; i < m; i++) { U[i][j] += t * U[i][k]; } } for (int i = k; i < m; i++) { U[i][k] = -U[i][k]; } U[k][k] = 1 + U[k][k]; for (int i = 0; i < k - 1; i++) { U[i][k] = 0; } } else { for (int i = 0; i < m; i++) { U[i][k] = 0; } U[k][k] = 1; } } // Generate V. for (int k = n - 1; k >= 0; k--) { if (k < nrt && e[k] != 0) { for (int j = k + 1; j < n; j++) { double t = 0; for (int i = k + 1; i < n; i++) { t += V[i][k] * V[i][j]; } t = -t / V[k + 1][k]; for (int i = k + 1; i < n; i++) { V[i][j] += t * V[i][k]; } } } for (int i = 0; i < n; i++) { V[i][k] = 0; } V[k][k] = 1; } // Main iteration loop for the singular values. final int pp = p - 1; int iter = 0; while (p > 0) { int k; int kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p - 2; k >= 0; k--) { final double threshold = TINY + EPS * (FastMath.abs(singularValues[k]) + FastMath.abs(singularValues[k + 1])); // the following condition is written this way in order // to break out of the loop when NaN occurs, writing it // as "if (FastMath.abs(e[k]) <= threshold)" would loop // indefinitely in case of NaNs because comparison on NaNs // always return false, regardless of what is checked // see issue MATH-947 if (!(FastMath.abs(e[k]) > threshold)) { e[k] = 0; break; } } if (k == p - 2) { kase = 4; } else { int ks; for (ks = p - 1; ks >= k; ks--) { if (ks == k) { break; } final double t = (ks != p ? FastMath.abs(e[ks]) : 0) + (ks != k + 1 ? FastMath.abs(e[ks - 1]) : 0); if (FastMath.abs(singularValues[ks]) <= TINY + EPS * t) { singularValues[ks] = 0; break; } } if (ks == k) { kase = 3; } else if (ks == p - 1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p - 2]; e[p - 2] = 0; for (int j = p - 2; j >= k; j--) { double t = FastMath.hypot(singularValues[j], f); final double cs = singularValues[j] / t; final double sn = f / t; singularValues[j] = t; if (j != k) { f = -sn * e[j - 1]; e[j - 1] = cs * e[j - 1]; } for (int i = 0; i < n; i++) { t = cs * V[i][j] + sn * V[i][p - 1]; V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1]; V[i][j] = t; } } } break; // Split at negligible s(k). case 2: { double f = e[k - 1]; e[k - 1] = 0; for (int j = k; j < p; j++) { double t = FastMath.hypot(singularValues[j], f); final double cs = singularValues[j] / t; final double sn = f / t; singularValues[j] = t; f = -sn * e[j]; e[j] = cs * e[j]; for (int i = 0; i < m; i++) { t = cs * U[i][j] + sn * U[i][k - 1]; U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1]; U[i][j] = t; } } } break; // Perform one qr step. case 3: { // Calculate the shift. final double maxPm1Pm2 = FastMath.max( FastMath.abs(singularValues[p - 1]), FastMath.abs(singularValues[p - 2])); final double scale = FastMath.max( FastMath.max( FastMath.max(maxPm1Pm2, FastMath.abs(e[p - 2])), FastMath.abs(singularValues[k])), FastMath.abs(e[k])); final double sp = singularValues[p - 1] / scale; final double spm1 = singularValues[p - 2] / scale; final double epm1 = e[p - 2] / scale; final double sk = singularValues[k] / scale; final double ek = e[k] / scale; final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0; final double c = (sp * epm1) * (sp * epm1); double shift = 0; if (b != 0 || c != 0) { shift = FastMath.sqrt(b * b + c); if (b < 0) { shift = -shift; } shift = c / (b + shift); } double f = (sk + sp) * (sk - sp) + shift; double g = sk * ek; // Chase zeros. for (int j = k; j < p - 1; j++) { double t = FastMath.hypot(f, g); double cs = f / t; double sn = g / t; if (j != k) { e[j - 1] = t; } f = cs * singularValues[j] + sn * e[j]; e[j] = cs * e[j] - sn * singularValues[j]; g = sn * singularValues[j + 1]; singularValues[j + 1] = cs * singularValues[j + 1]; for (int i = 0; i < n; i++) { t = cs * V[i][j] + sn * V[i][j + 1]; V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1]; V[i][j] = t; } t = FastMath.hypot(f, g); cs = f / t; sn = g / t; singularValues[j] = t; f = cs * e[j] + sn * singularValues[j + 1]; singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1]; g = sn * e[j + 1]; e[j + 1] = cs * e[j + 1]; if (j < m - 1) { for (int i = 0; i < m; i++) { t = cs * U[i][j] + sn * U[i][j + 1]; U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1]; U[i][j] = t; } } } e[p - 2] = f; iter = iter + 1; } break; // Convergence. default: { // Make the singular values positive. if (singularValues[k] <= 0) { singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0; for (int i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } // Order the singular values. while (k < pp) { if (singularValues[k] >= singularValues[k + 1]) { break; } double t = singularValues[k]; singularValues[k] = singularValues[k + 1]; singularValues[k + 1] = t; if (k < n - 1) { for (int i = 0; i < n; i++) { t = V[i][k + 1]; V[i][k + 1] = V[i][k]; V[i][k] = t; } } if (k < m - 1) { for (int i = 0; i < m; i++) { t = U[i][k + 1]; U[i][k + 1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; } break; } } // Set the small value tolerance used to calculate rank and pseudo-inverse tol = FastMath.max(m * singularValues[0] * EPS, FastMath.sqrt(Precision.SAFE_MIN)); if (!transposed) { cachedU = MatrixUtils.createRealMatrix(U); cachedV = MatrixUtils.createRealMatrix(V); } else { cachedU = MatrixUtils.createRealMatrix(V); cachedV = MatrixUtils.createRealMatrix(U); } }