/** {@inheritDoc} */ @Override protected PointValuePair doOptimize() { checkParameters(); // Indirect call to "computeObjectiveValue" in order to update the // evaluations counter. final MultivariateFunction evalFunc = new MultivariateFunction() { public double value(double[] point) { return computeObjectiveValue(point); } }; final boolean isMinim = getGoalType() == GoalType.MINIMIZE; final Comparator<PointValuePair> comparator = new Comparator<PointValuePair>() { public int compare(final PointValuePair o1, final PointValuePair o2) { final double v1 = o1.getValue(); final double v2 = o2.getValue(); return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1); } }; // Initialize search. simplex.build(getStartPoint()); simplex.evaluate(evalFunc, comparator); PointValuePair[] previous = null; int iteration = 0; final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker(); while (true) { if (getIterations() > 0) { boolean converged = true; for (int i = 0; i < simplex.getSize(); i++) { PointValuePair prev = previous[i]; converged = converged && checker.converged(iteration, prev, simplex.getPoint(i)); } if (converged) { // We have found an optimum. return simplex.getPoint(0); } } // We still need to search. previous = simplex.getPoints(); simplex.iterate(evalFunc, comparator); incrementIterationCount(); } }
/** {@inheritDoc} */ public Optimum optimize(final LeastSquaresProblem problem) { // Pull in relevant data from the problem as locals. final int nR = problem.getObservationSize(); // Number of observed data. final int nC = problem.getParameterSize(); // Number of parameters. // Counters. final Incrementor iterationCounter = problem.getIterationCounter(); final Incrementor evaluationCounter = problem.getEvaluationCounter(); // Convergence criterion. final ConvergenceChecker<Evaluation> checker = problem.getConvergenceChecker(); // arrays shared with the other private methods final int solvedCols = FastMath.min(nR, nC); /* Parameters evolution direction associated with lmPar. */ double[] lmDir = new double[nC]; /* Levenberg-Marquardt parameter. */ double lmPar = 0; // local point double delta = 0; double xNorm = 0; double[] diag = new double[nC]; double[] oldX = new double[nC]; double[] oldRes = new double[nR]; double[] qtf = new double[nR]; double[] work1 = new double[nC]; double[] work2 = new double[nC]; double[] work3 = new double[nC]; // Evaluate the function at the starting point and calculate its norm. evaluationCounter.incrementCount(); // value will be reassigned in the loop Evaluation current = problem.evaluate(problem.getStart()); double[] currentResiduals = current.getResiduals().toArray(); double currentCost = current.getCost(); double[] currentPoint = current.getPoint().toArray(); // Outer loop. boolean firstIteration = true; while (true) { iterationCounter.incrementCount(); final Evaluation previous = current; // QR decomposition of the jacobian matrix final InternalData internalData = qrDecomposition(current.getJacobian(), solvedCols); final double[][] weightedJacobian = internalData.weightedJacobian; final int[] permutation = internalData.permutation; final double[] diagR = internalData.diagR; final double[] jacNorm = internalData.jacNorm; // residuals already have weights applied double[] weightedResidual = currentResiduals; for (int i = 0; i < nR; i++) { qtf[i] = weightedResidual[i]; } // compute Qt.res qTy(qtf, internalData); // now we don't need Q anymore, // so let jacobian contain the R matrix with its diagonal elements for (int k = 0; k < solvedCols; ++k) { int pk = permutation[k]; weightedJacobian[k][pk] = diagR[pk]; } if (firstIteration) { // scale the point according to the norms of the columns // of the initial jacobian xNorm = 0; for (int k = 0; k < nC; ++k) { double dk = jacNorm[k]; if (dk == 0) { dk = 1.0; } double xk = dk * currentPoint[k]; xNorm += xk * xk; diag[k] = dk; } xNorm = FastMath.sqrt(xNorm); // initialize the step bound delta delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); } // check orthogonality between function vector and jacobian columns double maxCosine = 0; if (currentCost != 0) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = jacNorm[pj]; if (s != 0) { double sum = 0; for (int i = 0; i <= j; ++i) { sum += weightedJacobian[i][pj] * qtf[i]; } maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost)); } } } if (maxCosine <= orthoTolerance) { // Convergence has been reached. return new OptimumImpl(current, evaluationCounter.getCount(), iterationCounter.getCount()); } // rescale if necessary for (int j = 0; j < nC; ++j) { diag[j] = FastMath.max(diag[j], jacNorm[j]); } // Inner loop. for (double ratio = 0; ratio < 1.0e-4; ) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = currentPoint[pj]; } final double previousCost = currentCost; double[] tmpVec = weightedResidual; weightedResidual = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter lmPar = determineLMParameter( qtf, delta, diag, internalData, solvedCols, work1, work2, work3, lmDir, lmPar); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; currentPoint[pj] = oldX[pj] + lmDir[pj]; double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = FastMath.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = FastMath.min(delta, lmNorm); } // Evaluate the function at x + p and calculate its norm. evaluationCounter.incrementCount(); current = problem.evaluate(new ArrayRealVector(currentPoint)); currentResiduals = current.getResiduals().toArray(); currentCost = current.getCost(); currentPoint = current.getPoint().toArray(); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * currentCost < previousCost) { double r = currentCost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; for (int i = 0; i <= j; ++i) { work1[i] += weightedJacobian[i][pj] * dirJ; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 /= pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * FastMath.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < nC; ++k) { double xK = diag[k] * currentPoint[k]; xNorm += xK * xK; } xNorm = FastMath.sqrt(xNorm); // tests for convergence. if (checker != null && checker.converged(iterationCounter.getCount(), previous, current)) { return new OptimumImpl( current, evaluationCounter.getCount(), iterationCounter.getCount()); } } else { // failed iteration, reset the previous values currentCost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; currentPoint[pj] = oldX[pj]; } tmpVec = weightedResidual; weightedResidual = oldRes; oldRes = tmpVec; // Reset "current" to previous values. current = previous; } // Default convergence criteria. if ((FastMath.abs(actRed) <= costRelativeTolerance && preRed <= costRelativeTolerance && ratio <= 2.0) || delta <= parRelativeTolerance * xNorm) { return new OptimumImpl( current, evaluationCounter.getCount(), iterationCounter.getCount()); } // tests for termination and stringent tolerances if (FastMath.abs(actRed) <= TWO_EPS && preRed <= TWO_EPS && ratio <= 2.0) { throw new ConvergenceException( LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE, costRelativeTolerance); } else if (delta <= TWO_EPS * xNorm) { throw new ConvergenceException( LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE, parRelativeTolerance); } else if (maxCosine <= TWO_EPS) { throw new ConvergenceException( LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE, orthoTolerance); } } } }
/** {@inheritDoc} */ @Override protected PointValuePair doOptimize() { final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker(); final double[] point = getStartPoint(); final GoalType goal = getGoalType(); final int n = point.length; double[] r = computeObjectiveGradient(point); if (goal == GoalType.MINIMIZE) { for (int i = 0; i < n; i++) { r[i] = -r[i]; } } // Initial search direction. double[] steepestDescent = preconditioner.precondition(point, r); double[] searchDirection = steepestDescent.clone(); double delta = 0; for (int i = 0; i < n; ++i) { delta += r[i] * searchDirection[i]; } PointValuePair current = null; while (true) { incrementIterationCount(); final double objective = computeObjectiveValue(point); PointValuePair previous = current; current = new PointValuePair(point, objective); if (previous != null && checker.converged(getIterations(), previous, current)) { // We have found an optimum. return current; } final double step = line.search(point, searchDirection).getPoint(); // Validate new point. for (int i = 0; i < point.length; ++i) { point[i] += step * searchDirection[i]; } r = computeObjectiveGradient(point); if (goal == GoalType.MINIMIZE) { for (int i = 0; i < n; ++i) { r[i] = -r[i]; } } // Compute beta. final double deltaOld = delta; final double[] newSteepestDescent = preconditioner.precondition(point, r); delta = 0; for (int i = 0; i < n; ++i) { delta += r[i] * newSteepestDescent[i]; } final double beta; switch (updateFormula) { case FLETCHER_REEVES: beta = delta / deltaOld; break; case POLAK_RIBIERE: double deltaMid = 0; for (int i = 0; i < r.length; ++i) { deltaMid += r[i] * steepestDescent[i]; } beta = (delta - deltaMid) / deltaOld; break; default: // Should never happen. throw new MathInternalError(); } steepestDescent = newSteepestDescent; // Compute conjugate search direction. if (getIterations() % n == 0 || beta < 0) { // Break conjugation: reset search direction. searchDirection = steepestDescent.clone(); } else { // Compute new conjugate search direction. for (int i = 0; i < n; ++i) { searchDirection[i] = steepestDescent[i] + beta * searchDirection[i]; } } } }
/** {@inheritDoc} */ @Override protected UnivariatePointValuePair doOptimize() { final boolean isMinim = getGoalType() == GoalType.MINIMIZE; final double lo = getMin(); final double mid = getStartValue(); final double hi = getMax(); // Optional additional convergence criteria. final ConvergenceChecker<UnivariatePointValuePair> checker = getConvergenceChecker(); double a; double b; if (lo < hi) { a = lo; b = hi; } else { a = hi; b = lo; } double x = mid; double v = x; double w = x; double d = 0; double e = 0; double fx = computeObjectiveValue(x); if (!isMinim) { fx = -fx; } double fv = fx; double fw = fx; UnivariatePointValuePair previous = null; UnivariatePointValuePair current = new UnivariatePointValuePair(x, isMinim ? fx : -fx); // Best point encountered so far (which is the initial guess). UnivariatePointValuePair best = current; while (true) { final double m = 0.5 * (a + b); final double tol1 = relativeThreshold * FastMath.abs(x) + absoluteThreshold; final double tol2 = 2 * tol1; // Default stopping criterion. final boolean stop = FastMath.abs(x - m) <= tol2 - 0.5 * (b - a); if (!stop) { double p = 0; double q = 0; double r = 0; double u = 0; if (FastMath.abs(e) > tol1) { // Fit parabola. r = (x - w) * (fx - fv); q = (x - v) * (fx - fw); p = (x - v) * q - (x - w) * r; q = 2 * (q - r); if (q > 0) { p = -p; } else { q = -q; } r = e; e = d; if (p > q * (a - x) && p < q * (b - x) && FastMath.abs(p) < FastMath.abs(0.5 * q * r)) { // Parabolic interpolation step. d = p / q; u = x + d; // f must not be evaluated too close to a or b. if (u - a < tol2 || b - u < tol2) { if (x <= m) { d = tol1; } else { d = -tol1; } } } else { // Golden section step. if (x < m) { e = b - x; } else { e = a - x; } d = GOLDEN_SECTION * e; } } else { // Golden section step. if (x < m) { e = b - x; } else { e = a - x; } d = GOLDEN_SECTION * e; } // Update by at least "tol1". if (FastMath.abs(d) < tol1) { if (d >= 0) { u = x + tol1; } else { u = x - tol1; } } else { u = x + d; } double fu = computeObjectiveValue(u); if (!isMinim) { fu = -fu; } // User-defined convergence checker. previous = current; current = new UnivariatePointValuePair(u, isMinim ? fu : -fu); best = best(best, best(previous, current, isMinim), isMinim); if (checker != null && checker.converged(getIterations(), previous, current)) { return best; } // Update a, b, v, w and x. if (fu <= fx) { if (u < x) { b = x; } else { a = x; } v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; } else { if (u < x) { a = u; } else { b = u; } if (fu <= fw || Precision.equals(w, x)) { v = w; fv = fw; w = u; fw = fu; } else if (fu <= fv || Precision.equals(v, x) || Precision.equals(v, w)) { v = u; fv = fu; } } } else { // Default termination (Brent's criterion). return best(best, best(previous, current, isMinim), isMinim); } incrementIterationCount(); } }