@Test public void testSerialization() throws Exception { Range<Token> first = new Range<>(tok(3), tok(4)); Collection<Range<Token>> ranges = new ArrayList<>(); ranges.add(first); ranges.add(new Range<Token>(tok(5), tok(2))); mts = new MerkleTrees(partitioner); mts.addMerkleTrees(256, ranges); // populate and validate the tree mts.init(); for (TreeRange range : mts.invalids()) range.addAll(new HIterator(range.right)); byte[] initialhash = mts.hash(first); long serializedSize = MerkleTrees.serializer.serializedSize(mts, MessagingService.current_version); DataOutputBuffer out = new DataOutputBuffer(); MerkleTrees.serializer.serialize(mts, out, MessagingService.current_version); byte[] serialized = out.toByteArray(); assertEquals(serializedSize, serialized.length); DataInputBuffer in = new DataInputBuffer(serialized); MerkleTrees restored = MerkleTrees.serializer.deserialize(in, MessagingService.current_version); assertHashEquals(initialhash, restored.hash(first)); }
@Test public void testHashRandom() { int max = 1000000; TOKEN_SCALE = new BigInteger("" + max); mt = new MerkleTree(partitioner, RECOMMENDED_DEPTH, 32); Random random = new Random(); while (true) { if (!mt.split(tok(random.nextInt(max)))) break; } // validate the tree TreeRangeIterator ranges = mt.invalids(new Range(tok(-1), tok(-1))); for (TreeRange range : ranges) range.addHash(new RowHash(range.right, new byte[0])); assert null != mt.hash(new Range(tok(-1), tok(-1))) : "Could not hash tree " + mt; }
@Test public void testHashRandom() { int max = 1000000; TOKEN_SCALE = new BigInteger("" + max); mts = new MerkleTrees(partitioner); mts.addMerkleTree(32, fullRange()); Random random = new Random(); while (true) { if (!mts.split(tok(random.nextInt(max)))) break; } // validate the tree TreeRangeIterator ranges = mts.invalids(); for (TreeRange range : ranges) range.addHash(new RowHash(range.right, new byte[0], 0)); assert mts.hash(new Range<>(tok(-1), tok(-1))) != null : "Could not hash tree " + mts; }
@Test public void testSerialization() throws Exception { Range full = new Range(tok(-1), tok(-1)); ByteArrayOutputStream bout = new ByteArrayOutputStream(); ObjectOutputStream oout = new ObjectOutputStream(bout); // populate and validate the tree mt.maxsize(256); mt.init(); for (TreeRange range : mt.invalids(full)) range.addAll(new HIterator(range.right)); byte[] initialhash = mt.hash(full); oout.writeObject(mt); oout.close(); ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray()); ObjectInputStream oin = new ObjectInputStream(bin); MerkleTree restored = (MerkleTree) oin.readObject(); // restore partitioner after serialization restored.partitioner(partitioner); assertHashEquals(initialhash, restored.hash(full)); }
@Test public void testDifference() { int maxsize = 16; mts = new MerkleTrees(partitioner); mts.addMerkleTree(32, fullRange()); MerkleTrees mts2 = new MerkleTrees(partitioner); mts2.addMerkleTree(32, fullRange()); mts.init(); mts2.init(); // add dummy hashes to both trees for (TreeRange range : mts.invalids()) range.addAll(new HIterator(range.right)); for (TreeRange range : mts2.invalids()) range.addAll(new HIterator(range.right)); TreeRange leftmost = null; TreeRange middle = null; mts.maxsize(fullRange(), maxsize + 2); // give some room for splitting // split the leftmost Iterator<TreeRange> ranges = mts.invalids(); leftmost = ranges.next(); mts.split(leftmost.right); // set the hashes for the leaf of the created split middle = mts.get(leftmost.right); middle.hash("arbitrary!".getBytes()); mts.get(partitioner.midpoint(leftmost.left, leftmost.right)) .hash("even more arbitrary!".getBytes()); // trees should disagree for (leftmost.left, middle.right] List<Range<Token>> diffs = MerkleTrees.difference(mts, mts2); assertEquals(diffs + " contains wrong number of differences:", 1, diffs.size()); assertTrue(diffs.contains(new Range<>(leftmost.left, middle.right))); }
@Test public void testDifference() { Range full = new Range(tok(-1), tok(-1)); int maxsize = 16; mt.maxsize(maxsize); MerkleTree mt2 = new MerkleTree(partitioner, RECOMMENDED_DEPTH, maxsize); mt.init(); mt2.init(); TreeRange leftmost = null; TreeRange middle = null; TreeRange rightmost = null; // compact the leftmost, and split the rightmost Iterator<TreeRange> ranges = mt.invalids(full); leftmost = ranges.next(); rightmost = null; while (ranges.hasNext()) rightmost = ranges.next(); mt.compact(leftmost.right); leftmost = mt.get(leftmost.right); // leftmost is now a larger range mt.split(rightmost.right); // set the hash for the left neighbor of rightmost middle = mt.get(rightmost.left); middle.hash("arbitrary!".getBytes()); byte depth = middle.depth; // add dummy hashes to the rest of both trees for (TreeRange range : mt.invalids(full)) range.addAll(new HIterator(range.right)); for (TreeRange range : mt2.invalids(full)) range.addAll(new HIterator(range.right)); // trees should disagree for leftmost, (middle.left, rightmost.right] List<TreeRange> diffs = MerkleTree.difference(mt, mt2); assertEquals(diffs + " contains wrong number of differences:", 2, diffs.size()); assertTrue(diffs.contains(leftmost)); assertTrue(diffs.contains(new Range(middle.left, rightmost.right))); }