void remove() {
   sl.size--;
   if (sl.first == this) sl.first = next;
   else prev.next = next;
   if (sl.last == this) sl.last = prev;
   else next.prev = prev;
 }
 /** Minimizes the given automaton using Hopcroft's algorithm. */
 public static void minimizeHopcroft(LinkedAutomaton a) {
   determinize(a);
   Set<Transition> tr = a.initial.getTransitions();
   if (tr.size() == 1) {
     Transition t = tr.iterator().next();
     if (t.to == a.initial && t.min == Character.MIN_VALUE && t.max == Character.MAX_VALUE) return;
   }
   a.totalize();
   // make arrays for numbered states and effective alphabet
   Set<State> ss = a.getStates();
   State[] states = new State[ss.size()];
   int number = 0;
   for (State q : ss) {
     states[number] = q;
     q.number = number++;
   }
   char[] sigma = a.getStartPoints();
   // initialize data structures
   ArrayList<ArrayList<LinkedList<State>>> reverse = new ArrayList<ArrayList<LinkedList<State>>>();
   for (int q = 0; q < states.length; q++) {
     ArrayList<LinkedList<State>> v = new ArrayList<LinkedList<State>>();
     initialize(v, sigma.length);
     reverse.add(v);
   }
   boolean[][] reverse_nonempty = new boolean[states.length][sigma.length];
   ArrayList<LinkedList<State>> partition = new ArrayList<LinkedList<State>>();
   initialize(partition, states.length);
   int[] block = new int[states.length];
   StateList[][] active = new StateList[states.length][sigma.length];
   StateListNode[][] active2 = new StateListNode[states.length][sigma.length];
   LinkedList<IntPair> pending = new LinkedList<IntPair>();
   boolean[][] pending2 = new boolean[sigma.length][states.length];
   ArrayList<State> split = new ArrayList<State>();
   boolean[] split2 = new boolean[states.length];
   ArrayList<Integer> refine = new ArrayList<Integer>();
   boolean[] refine2 = new boolean[states.length];
   ArrayList<ArrayList<State>> splitblock = new ArrayList<ArrayList<State>>();
   initialize(splitblock, states.length);
   for (int q = 0; q < states.length; q++) {
     splitblock.set(q, new ArrayList<State>());
     partition.set(q, new LinkedList<State>());
     for (int x = 0; x < sigma.length; x++) {
       reverse.get(q).set(x, new LinkedList<State>());
       active[q][x] = new StateList();
     }
   }
   // find initial partition and reverse edges
   for (int q = 0; q < states.length; q++) {
     State qq = states[q];
     int j;
     if (qq.accept != null) j = 0;
     else j = 1;
     partition.get(j).add(qq);
     block[qq.number] = j;
     for (int x = 0; x < sigma.length; x++) {
       char y = sigma[x];
       State p = qq.step(y);
       reverse.get(p.number).get(x).add(qq);
       reverse_nonempty[p.number][x] = true;
     }
   }
   // initialize active sets
   for (int j = 0; j <= 1; j++)
     for (int x = 0; x < sigma.length; x++)
       for (State qq : partition.get(j))
         if (reverse_nonempty[qq.number][x]) active2[qq.number][x] = active[j][x].add(qq);
   // initialize pending
   for (int x = 0; x < sigma.length; x++) {
     int a0 = active[0][x].size;
     int a1 = active[1][x].size;
     int j;
     if (a0 <= a1) j = 0;
     else j = 1;
     pending.add(new IntPair(j, x));
     pending2[x][j] = true;
   }
   // process pending until fixed point
   int k = 2;
   while (!pending.isEmpty()) {
     IntPair ip = pending.removeFirst();
     int p = ip.n1;
     int x = ip.n2;
     pending2[x][p] = false;
     // find states that need to be split off their blocks
     for (StateListNode m = active[p][x].first; m != null; m = m.next)
       for (State s : reverse.get(m.q.number).get(x))
         if (!split2[s.number]) {
           split2[s.number] = true;
           split.add(s);
           int j = block[s.number];
           splitblock.get(j).add(s);
           if (!refine2[j]) {
             refine2[j] = true;
             refine.add(j);
           }
         }
     // refine blocks
     for (int j : refine) {
       if (splitblock.get(j).size() < partition.get(j).size()) {
         LinkedList<State> b1 = partition.get(j);
         LinkedList<State> b2 = partition.get(k);
         for (State s : splitblock.get(j)) {
           b1.remove(s);
           b2.add(s);
           block[s.number] = k;
           for (int c = 0; c < sigma.length; c++) {
             StateListNode sn = active2[s.number][c];
             if (sn != null && sn.sl == active[j][c]) {
               sn.remove();
               active2[s.number][c] = active[k][c].add(s);
             }
           }
         }
         // update pending
         for (int c = 0; c < sigma.length; c++) {
           int aj = active[j][c].size;
           int ak = active[k][c].size;
           if (!pending2[c][j] && 0 < aj && aj <= ak) {
             pending2[c][j] = true;
             pending.add(new IntPair(j, c));
           } else {
             pending2[c][k] = true;
             pending.add(new IntPair(k, c));
           }
         }
         k++;
       }
       for (State s : splitblock.get(j)) split2[s.number] = false;
       refine2[j] = false;
       splitblock.get(j).clear();
     }
     split.clear();
     refine.clear();
   }
   // make a new state for each equivalence class, set initial state
   State[] newstates = new State[k];
   for (int n = 0; n < newstates.length; n++) {
     State s = new State();
     newstates[n] = s;
     for (State q : partition.get(n)) {
       if (q == a.initial) a.initial = s;
       s.accept = q.accept;
       s.number = q.number; // select representative
       q.number = n;
     }
   }
   // build transitions and set acceptance
   for (int n = 0; n < newstates.length; n++) {
     State s = newstates[n];
     s.accept = states[s.number].accept;
     for (Transition t : states[s.number].transitions)
       s.transitions.add(new Transition(t.min, t.max, newstates[t.to.number]));
   }
   a.removeDeadTransitions();
 }