@Override public boolean hasAspect(final String n) { return aspects.containsKey(n); }
private static void computeXaXsTransitions( final IScope scope, final IAgentFilter filter, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IContainer<Integer, IAgent> agents, final int nbCat, final Map<List<Integer>, Map<Double, Double>> XaPerTransition, final Map<List<Integer>, Map<Double, Double>> XsPerTransition, final Set<Double> Xvals) { IList<ILocation> locs = GamaListFactory.create(Types.POINT); for (IAgent ag : agents.iterable(scope)) { locs.add(ag.getLocation()); } ILocation centralLoc = (ILocation) Stats.getMean(scope, locs); if (filter != null) { IAgent centralAg = scope.getTopology().getAgentClosestTo(scope, centralLoc, filter); List<IAgent> neighbors = distance == 0 ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, centralAg, distance, filter)); double sizeNorm = FastMath.sqrt(centralAg.getEnvelope().getArea()); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(centralAg, 1.0); for (IAgent ag : neighbors) { double euclidDist = centralAg.getLocation().euclidianDistanceTo(ag.getLocation()); double dist = 1 / (1.0 + euclidDist / sizeNorm); distancesCoeff.put(ag, dist); } for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList(); ca.add(i); ca.add(j); ca.add(k); double xa = 0; double xs = 0; for (IAgent ag : distancesCoeff.keySet()) { double dist = distancesCoeff.get(ag); double xatmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, k, i, j) * dist; double xstmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, j, i, k) * dist; if (xatmp > xa) { xa = xatmp; } if (xstmp > xs) { xs = xstmp; } } if (xa > 0) { Map<Double, Double> mapxa = XaPerTransition.get(ca); if (mapxa == null) { mapxa = new TOrderedHashMap<Double, Double>(); mapxa.put(xa, 1.0); XaPerTransition.put(ca, mapxa); } else { if (mapxa.containsKey(xa)) { mapxa.put(xa, mapxa.get(xa) + 1.0); } else { mapxa.put(xa, 1.0); } } Xvals.add(xa); } if (xs > 0) { Map<Double, Double> mapxs = XsPerTransition.get(ca); if (mapxs == null) { mapxs = new TOrderedHashMap<Double, Double>(); mapxs.put(xs, 1.0); XsPerTransition.put(ca, mapxs); } else { if (mapxs.containsKey(xa)) { mapxs.put(xs, mapxs.get(xs) + 1.0); } else { mapxs.put(xs, 1.0); } } Xvals.add(xs); } } } } } }
@Override public boolean hasVar(final String name) { return variables.containsKey(name); }
@operator( value = {"fuzzy_kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.MAP}) @doc( value = "fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, ", examples = { @example( value = "fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappaSimulation( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } similarities.clear(); int nbCat = categories.size(); double[] nbObs = new double[nbCat]; double[] nbSim = new double[nbCat]; double[] nbInit = new double[nbCat]; double[][] nbInitObs = new double[nbCat][nbCat]; double[][] nbInitSim = new double[nbCat][nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); Map<List<Integer>, Map<Double, Double>> XaPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Map<List<Integer>, Map<Double, Double>> XsPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Set<Double> Xvals = new HashSet<Double>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } for (int i = 0; i < nbCat; i++) { nbInit[i] = 0; nbObs[i] = 0; nbSim[i] = 0; for (int j = 0; j < nbCat; j++) { nbInitObs[i][j] = 0; nbInitSim[i][j] = 0; } } IAgentFilter filter = In.list(scope, agents); double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; int idCatInit = categoriesId.get(valsInit.get(i)); int idCatObs = categoriesId.get(valsObs.get(i)); int idCatSim = categoriesId.get(valsSim.get(i)); nbInit[idCatInit] += weight; nbSim[idCatSim] += weight; nbObs[idCatObs] += weight; nbInitObs[idCatInit][idCatObs] += weight; nbInitSim[idCatInit][idCatSim] += weight; } double po = computePo( scope, filter, categoriesId, fuzzytransitions, distance, valsInit, valsObs, valsSim, agents, nbCat, nb, similarities, weights); double pe = 0; computeXaXsTransitions( scope, filter, fuzzytransitions, distance, agents, nbCat, XaPerTransition, XsPerTransition, Xvals); for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList<Integer>(); ca.add(i); ca.add(j); ca.add(k); Map<Double, Double> pmuXa = XaPerTransition.get(ca); Map<Double, Double> pmuXs = XsPerTransition.get(ca); double emu = 0; for (Double xval : Xvals) { double XaVal = pmuXa == null || !pmuXa.containsKey(xval) ? 0 : pmuXa.get(xval); double XsVal = pmuXs == null || !pmuXs.containsKey(xval) ? 0 : pmuXs.get(xval); double proba = xval * XaVal * XsVal; emu += proba; } double poas = nbInit[i] == 0 ? 0 : nbInitObs[i][j] / nbInit[i] * nbInitSim[i][k] / total; pe += emu * poas; } } } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }