/** * Can be called with values[ 3 ], i.e. [initialsigma, sigma2, threshold] or values[ 2 ], i.e. * [initialsigma, threshold] * * <p>The results are stored in the same array. If called with values[ 2 ], sigma2 changing will * be disabled * * @param text - the text which is shown when asking for the file * @param values - the initial values and also contains the result * @param sigmaMax - the maximal sigma allowed by the interactive app * @return {@link InteractiveDoG} - the instance for querying additional parameters */ public static InteractiveDoG getInteractiveDoGParameters( final ImagePlus imp, final int channel, final double values[], final float sigmaMax) { if (imp.isDisplayedHyperStack()) imp.setPosition(imp.getStackIndex(channel + 1, imp.getNSlices() / 2 + 1, 1)); else imp.setSlice(imp.getStackIndex(channel + 1, imp.getNSlices() / 2 + 1, 1)); imp.setRoi(0, 0, imp.getWidth() / 3, imp.getHeight() / 3); final InteractiveDoG idog = new InteractiveDoG(imp, channel); idog.setSigmaMax(sigmaMax); idog.setLookForMaxima(defaultInteractiveMaxima); idog.setLookForMinima(defaultInteractiveMinima); if (values.length == 2) { idog.setSigma2isAdjustable(false); idog.setInitialSigma((float) values[0]); idog.setThreshold((float) values[1]); } else { idog.setInitialSigma((float) values[0]); idog.setThreshold((float) values[2]); } idog.run(null); while (!idog.isFinished()) SimpleMultiThreading.threadWait(100); if (values.length == 2) { values[0] = idog.getInitialSigma(); values[1] = idog.getThreshold(); } else { values[0] = idog.getInitialSigma(); values[1] = idog.getSigma2(); values[2] = idog.getThreshold(); } // remove the roi imp.killRoi(); defaultInteractiveMaxima = idog.getLookForMaxima(); defaultInteractiveMinima = idog.getLookForMinima(); return idog; }
/** * Ask for all other required parameters .. * * @param dimensionality */ protected DescriptorParameters getParameters( final ImagePlus imp1, final ImagePlus imp2, final int dimensionality) { final String[] transformationModel = dimensionality == 2 ? transformationModels2d : transformationModels3d; // check if default selection of transformation model holds if (defaultTransformationModel >= transformationModel.length) defaultTransformationModel = 1; if (defaultRegularizationTransformationModel >= transformationModel.length) defaultRegularizationTransformationModel = 1; // one of them is by default interactive, then all are interactive if (defaultDetectionBrightness == detectionBrightness.length - 1 || defaultDetectionSize == detectionSize.length - 1 || defaultDetectionType == detectionTypes.length - 1) { defaultDetectionBrightness = detectionBrightness.length - 1; defaultDetectionSize = detectionSize.length - 1; defaultDetectionType = detectionTypes.length - 1; } final GenericDialog gd = new GenericDialog(dimensionality + "-dimensional descriptor based registration"); gd.addChoice( "Brightness_of detections", detectionBrightness, detectionBrightness[defaultDetectionBrightness]); gd.addChoice( "Approximate_size of detections", detectionSize, detectionSize[defaultDetectionSize]); gd.addChoice("Type_of_detections", detectionTypes, detectionTypes[defaultDetectionType]); gd.addChoice( "Subpixel_Localization", Descriptor_based_series_registration.localizationChoice, Descriptor_based_series_registration.localizationChoice[ Descriptor_based_series_registration.defaultLocalization]); gd.addChoice( "Transformation_model", transformationModel, transformationModel[defaultTransformationModel]); gd.addCheckbox("Regularize_model", defaultRegularize); gd.addChoice("Images_pre-alignemnt", orientation, orientation[defaultSimilarOrientation]); if (dimensionality == 2) { if (defaultNumNeighbors < 2) defaultNumNeighbors = 2; gd.addSlider("Number_of_neighbors for the descriptors", 2, 10, defaultNumNeighbors); } else { if (defaultNumNeighbors < 3) defaultNumNeighbors = 3; gd.addSlider("Number_of_neighbors for the descriptors", 3, 10, defaultNumNeighbors); } gd.addSlider("Redundancy for descriptor matching", 0, 10, defaultRedundancy); gd.addSlider("Significance required for a descriptor match", 1.0, 10.0, defaultSignificance); gd.addSlider("Allowed_error_for_RANSAC (px)", 0.5, 20.0, defaultRansacThreshold); final int numChannels1 = imp1.getNChannels(); final int numChannels2 = imp2.getNChannels(); if (defaultChannel1 > numChannels1) defaultChannel1 = 1; if (defaultChannel2 > numChannels2) defaultChannel2 = 1; gd.addSlider("Choose_registration_channel_for_image_1", 1, numChannels1, defaultChannel1); gd.addSlider("Choose_registration_channel_for_image_2", 1, numChannels2, defaultChannel2); gd.addMessage("Image fusion"); gd.addCheckbox("Create_overlayed images", defaultCreateOverlay); gd.addCheckbox("Add_point_rois for corresponding features to images", defaultAddPointRoi); gd.addMessage(""); gd.addMessage("This Plugin is developed by Stephan Preibisch\n" + myURL); MultiLineLabel text = (MultiLineLabel) gd.getMessage(); Bead_Registration.addHyperLinkListener(text, myURL); gd.showDialog(); if (gd.wasCanceled()) return null; final DescriptorParameters params = new DescriptorParameters(); params.dimensionality = dimensionality; params.roi1 = imp1.getRoi(); params.roi2 = imp2.getRoi(); final int detectionBrightnessIndex = gd.getNextChoiceIndex(); final int detectionSizeIndex = gd.getNextChoiceIndex(); final int detectionTypeIndex = gd.getNextChoiceIndex(); final int localization = gd.getNextChoiceIndex(); final int transformationModelIndex = gd.getNextChoiceIndex(); final boolean regularize = gd.getNextBoolean(); final int similarOrientation = gd.getNextChoiceIndex(); final int numNeighbors = (int) Math.round(gd.getNextNumber()); final int redundancy = (int) Math.round(gd.getNextNumber()); final double significance = gd.getNextNumber(); final double ransacThreshold = gd.getNextNumber(); // zero-offset channel final int channel1 = (int) Math.round(gd.getNextNumber()) - 1; final int channel2 = (int) Math.round(gd.getNextNumber()) - 1; final boolean createOverlay = gd.getNextBoolean(); final boolean addPointRoi = gd.getNextBoolean(); // update static values for next call defaultDetectionBrightness = detectionBrightnessIndex; defaultDetectionSize = detectionSizeIndex; defaultDetectionType = detectionTypeIndex; Descriptor_based_series_registration.defaultLocalization = localization; defaultTransformationModel = transformationModelIndex; defaultRegularize = regularize; defaultSimilarOrientation = similarOrientation; defaultNumNeighbors = numNeighbors; defaultRedundancy = redundancy; defaultSignificance = significance; defaultRansacThreshold = ransacThreshold; defaultChannel1 = channel1 + 1; defaultChannel2 = channel2 + 1; defaultCreateOverlay = createOverlay; defaultAddPointRoi = addPointRoi; // instantiate model if (dimensionality == 2) { switch (transformationModelIndex) { case 0: params.model = new TranslationModel2D(); break; case 1: params.model = new RigidModel2D(); break; case 2: params.model = new SimilarityModel2D(); break; case 3: params.model = new AffineModel2D(); break; case 4: if (regularize) { IJ.log("HomographyModel2D cannot be regularized yet"); return null; } params.model = new HomographyModel2D(); break; default: params.model = new RigidModel2D(); break; } } else { switch (transformationModelIndex) { case 0: params.model = new TranslationModel3D(); break; case 1: params.model = new RigidModel3D(); break; case 2: params.model = new SimilarityModel3D(); break; case 3: params.model = new AffineModel3D(); break; default: params.model = new RigidModel3D(); break; } } // regularization if (regularize) { final GenericDialog gdRegularize = new GenericDialog("Choose Regularization Model"); gdRegularize.addChoice( "Transformation_model", transformationModel, transformationModel[defaultRegularizationTransformationModel]); gdRegularize.addNumericField("Lambda", defaultLambda, 2); gdRegularize.showDialog(); if (gdRegularize.wasCanceled()) return null; params.regularize = true; final int modelIndex = defaultRegularizationTransformationModel = gdRegularize.getNextChoiceIndex(); params.fixFirstTile = true; params.lambda = defaultLambda = gdRegularize.getNextNumber(); // update model to a regularized one using the previous model if (dimensionality == 2) { switch (modelIndex) { case 0: params.model = new InterpolatedAffineModel2D( params.model, new TranslationModel2D(), (float) params.lambda); break; case 1: params.model = new InterpolatedAffineModel2D( params.model, new RigidModel2D(), (float) params.lambda); break; case 2: params.model = new InterpolatedAffineModel2D( params.model, new SimilarityModel2D(), (float) params.lambda); break; case 3: params.model = new InterpolatedAffineModel2D( params.model, new AffineModel2D(), (float) params.lambda); break; case 4: IJ.log("HomographyModel2D cannot be used for regularization yet"); return null; default: params.model = new InterpolatedAffineModel2D( params.model, new RigidModel2D(), (float) params.lambda); break; } } else { switch (modelIndex) { case 0: params.model = new InterpolatedAffineModel3D( params.model, new TranslationModel3D(), (float) params.lambda); break; case 1: params.model = new InterpolatedAffineModel3D( params.model, new RigidModel3D(), (float) params.lambda); break; case 2: params.model = new InterpolatedAffineModel3D( params.model, new SimilarityModel3D(), (float) params.lambda); break; case 3: params.model = new InterpolatedAffineModel3D( params.model, new AffineModel3D(), (float) params.lambda); break; default: params.model = new InterpolatedAffineModel3D( params.model, new RigidModel3D(), (float) params.lambda); break; } } } else { params.regularize = false; params.fixFirstTile = true; } // one of them is by default interactive, then all are interactive if (detectionBrightnessIndex == detectionBrightness.length - 1 || detectionSizeIndex == detectionSize.length - 1 || detectionTypeIndex == detectionTypes.length - 1) { // query parameters interactively final double[] values = new double[] {defaultSigma, defaultThreshold}; final InteractiveDoG idog = getInteractiveDoGParameters(imp1, channel1, values, 20); if (idog.wasCanceled()) return null; params.sigma1 = values[0]; params.threshold = values[1]; params.lookForMaxima = idog.getLookForMaxima(); params.lookForMinima = idog.getLookForMinima(); } else { if (detectionBrightnessIndex == detectionBrightness.length - 2 || detectionSizeIndex == detectionSize.length - 2) { // ask for the dog parameters final double[] values = getAdvancedDoGParameters(defaultSigma, defaultThreshold); // cancelled if (values == null) return null; params.sigma1 = values[0]; params.threshold = values[1]; } else { if (detectionBrightnessIndex == 0) params.threshold = 0.001; else if (detectionBrightnessIndex == 1) params.threshold = 0.008; else if (detectionBrightnessIndex == 2) params.threshold = 0.03; else if (detectionBrightnessIndex == 3) params.threshold = 0.1; params.sigma1 = (detectionSizeIndex + 2.0) / 2.0; } if (detectionTypeIndex == 2) { params.lookForMaxima = true; params.lookForMinima = true; } else if (detectionTypeIndex == 1) { params.lookForMinima = true; params.lookForMaxima = false; } else { params.lookForMinima = false; params.lookForMaxima = true; } } // set the new default values defaultSigma = params.sigma1; defaultThreshold = params.threshold; if (params.lookForMaxima && params.lookForMinima) defaultDetectionType = 2; else if (params.lookForMinima) defaultDetectionType = 1; else defaultDetectionType = 0; // other parameters params.sigma2 = InteractiveDoG.computeSigma2((float) params.sigma1, InteractiveDoG.standardSenstivity); if (similarOrientation == 0) params.similarOrientation = false; else params.similarOrientation = true; params.numNeighbors = numNeighbors; params.redundancy = redundancy; params.significance = significance; params.ransacThreshold = ransacThreshold; params.channel1 = channel1; params.channel2 = channel2; if (createOverlay) params.fuse = 0; else params.fuse = 2; params.setPointsRois = addPointRoi; params.localization = localization; // ask for the approximate transformation if (similarOrientation == 2) { if (TranslationModel3D.class.isInstance(params.model) || TranslationModel2D.class.isInstance(params.model)) { IJ.log("No parameters necessary ... the matching is anyways translation invariant."); } else if (RigidModel3D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for rigid model 3d"); gd2.addChoice("1st_Rotation_axis", axes, axes[defaultAxis1]); gd2.addSlider("1st_Rotation_angle", 0, 359, defaultDegrees1); gd2.addChoice("2nd_Rotation_axis", axes, axes[defaultAxis2]); gd2.addSlider("2nd_Rotation_angle", 0, 359, defaultDegrees2); gd2.addChoice("3rd_Rotation_axis", axes, axes[defaultAxis3]); gd2.addSlider("3rd_Rotation_angle", 0, 359, defaultDegrees3); gd2.showDialog(); if (gd2.wasCanceled()) return null; defaultAxis1 = gd2.getNextChoiceIndex(); defaultDegrees1 = gd2.getNextNumber(); defaultAxis2 = gd2.getNextChoiceIndex(); defaultDegrees2 = gd2.getNextNumber(); defaultAxis3 = gd2.getNextChoiceIndex(); defaultDegrees3 = gd2.getNextNumber(); final Transform3D t3 = new Transform3D(); final Transform3D t2 = new Transform3D(); final Transform3D t1 = new Transform3D(); if (defaultAxis1 == 0) t1.rotX(Math.toRadians(defaultDegrees1)); else if (defaultAxis1 == 1) t1.rotY(Math.toRadians(defaultDegrees1)); else t1.rotZ(Math.toRadians(defaultDegrees1)); if (defaultAxis2 == 0) t2.rotX(Math.toRadians(defaultDegrees2)); else if (defaultAxis2 == 1) t2.rotY(Math.toRadians(defaultDegrees2)); else t2.rotZ(Math.toRadians(defaultDegrees2)); if (defaultAxis3 == 0) t3.rotX(Math.toRadians(defaultDegrees3)); else if (defaultAxis3 == 1) t3.rotY(Math.toRadians(defaultDegrees3)); else t3.rotZ(Math.toRadians(defaultDegrees3)); final AffineModel3D m1 = TransformUtils.getAffineModel3D(t1); final AffineModel3D m2 = TransformUtils.getAffineModel3D(t2); final AffineModel3D m3 = TransformUtils.getAffineModel3D(t3); m1.preConcatenate(m2); m1.preConcatenate(m3); // set the model as initial guess params.initialModel = m1; } else if (AffineModel3D.class.isInstance(params.model) || SimilarityModel3D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for affine model 3d"); gd2.addMessage(""); gd2.addMessage("m00 m01 m02 m03"); gd2.addMessage("m10 m11 m12 m13"); gd2.addMessage("m20 m21 m22 m23"); gd2.addMessage(""); gd2.addMessage("Please provide 3d affine in this form (any brackets will be ignored):"); gd2.addMessage("m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23"); gd2.addStringField( "Affine_matrix", m00 + ", " + m01 + ", " + m02 + ", " + m03 + ", " + m10 + ", " + m11 + ", " + m12 + ", " + m13 + ", " + m20 + ", " + m21 + ", " + m22 + ", " + m23, 80); gd2.showDialog(); if (gd2.wasCanceled()) return null; String entry = Apply_External_Transformation.removeSequences( gd2.getNextString().trim(), new String[] { "(", ")", "{", "}", "[", "]", "<", ">", ":", "m00", "m01", "m02", "m03", "m10", "m11", "m12", "m13", "m20", "m21", "m22", "m23", " " }); final String[] numbers = entry.split(","); if (numbers.length != 12) { IJ.log( "Affine matrix has to have 12 entries: m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23"); IJ.log("This one has only " + numbers.length + " after trimming: " + entry); return null; } m00 = Double.parseDouble(numbers[0]); m01 = Double.parseDouble(numbers[1]); m02 = Double.parseDouble(numbers[2]); m03 = Double.parseDouble(numbers[3]); m10 = Double.parseDouble(numbers[4]); m11 = Double.parseDouble(numbers[5]); m12 = Double.parseDouble(numbers[6]); m13 = Double.parseDouble(numbers[7]); m20 = Double.parseDouble(numbers[8]); m21 = Double.parseDouble(numbers[9]); m22 = Double.parseDouble(numbers[10]); m23 = Double.parseDouble(numbers[11]); // set the model as initial guess final AffineModel3D model = new AffineModel3D(); model.set( (float) m00, (float) m01, (float) m02, (float) m03, (float) m10, (float) m11, (float) m12, (float) m13, (float) m20, (float) m21, (float) m22, (float) m23); params.initialModel = model; } else if (AffineModel2D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for affine model 2d"); gd2.addMessage(""); gd2.addMessage("m00 m01 m02"); gd2.addMessage("m10 m11 m12"); gd2.addMessage(""); gd2.addMessage("Please provide 2d affine in this form (any brackets will be ignored):"); gd2.addMessage("m00, m01, m02, m10, m11, m12"); gd2.addStringField( "Affine_matrix", m00 + ", " + m01 + ", " + m02 + ", " + m10 + ", " + m11 + ", " + m12, 60); gd2.showDialog(); if (gd2.wasCanceled()) return null; String entry = Apply_External_Transformation.removeSequences( gd2.getNextString().trim(), new String[] { "(", ")", "{", "}", "[", "]", "<", ">", ":", "m00", "m01", "m02", "m03", "m10", "m11", "m12", "m13", "m20", "m21", "m22", "m23", " " }); final String[] numbers = entry.split(","); if (numbers.length != 6) { IJ.log("Affine matrix has to have 6 entries: m00, m01, m02, m10, m11, m12"); IJ.log("This one has only " + numbers.length + " after trimming: " + entry); return null; } m00 = Double.parseDouble(numbers[0]); m01 = Double.parseDouble(numbers[1]); m02 = Double.parseDouble(numbers[2]); m10 = Double.parseDouble(numbers[3]); m11 = Double.parseDouble(numbers[4]); m12 = Double.parseDouble(numbers[5]); // set the model as initial guess final AffineModel2D model = new AffineModel2D(); model.set((float) m00, (float) m01, (float) m02, (float) m10, (float) m11, (float) m12); params.initialModel = model; } else if (HomographyModel2D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for homography model 2d"); gd2.addMessage(""); gd2.addMessage("m00 m01 m02"); gd2.addMessage("m10 m11 m12"); gd2.addMessage("m20 m21 m22"); gd2.addMessage(""); gd2.addMessage("Please provide 2d homography in this form (any brackets will be ignored):"); gd2.addMessage("m00, m01, m02, m10, m11, m12, m20, m21, m22"); gd2.addStringField( "Homography_matrix", m00 + ", " + m01 + ", " + m02 + ", " + m10 + ", " + m11 + ", " + m12, 70); gd2.showDialog(); if (gd2.wasCanceled()) return null; String entry = Apply_External_Transformation.removeSequences( gd2.getNextString().trim(), new String[] { "(", ")", "{", "}", "[", "]", "<", ">", ":", "m00", "m01", "m02", "m03", "m10", "m11", "m12", "m13", "m20", "m21", "m22", "m23", " " }); final String[] numbers = entry.split(","); if (numbers.length != 9) { IJ.log( "Homography matrix has to have 9 entries: m00, m01, m02, m10, m11, m12, m20, m21, m22"); IJ.log("This one has only " + numbers.length + " after trimming: " + entry); return null; } m00 = Double.parseDouble(numbers[0]); m01 = Double.parseDouble(numbers[1]); m02 = Double.parseDouble(numbers[2]); m10 = Double.parseDouble(numbers[3]); m11 = Double.parseDouble(numbers[4]); m12 = Double.parseDouble(numbers[5]); m20 = Double.parseDouble(numbers[6]); m21 = Double.parseDouble(numbers[7]); m22 = Double.parseDouble(numbers[8]); // set the model as initial guess final HomographyModel2D model = new HomographyModel2D(); model.set( (float) m00, (float) m01, (float) m02, (float) m10, (float) m11, (float) m12, (float) m20, (float) m21, (float) m22); params.initialModel = model; } else if (RigidModel2D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for rigid model 2d"); gd2.addSlider("Rotation_angle", 0, 359, defaultDegrees1); gd2.showDialog(); if (gd2.wasCanceled()) return null; defaultDegrees1 = gd2.getNextNumber(); // set the model as initial guess final RigidModel2D model = new RigidModel2D(); model.set((float) Math.toRadians(defaultDegrees1), 0, 0); params.initialModel = model; } else if (SimilarityModel2D.class.isInstance(params.model)) { final GenericDialog gd2 = new GenericDialog("Model parameters for rigid model 2d"); gd2.addSlider("Rotation_angle", 0, 359, defaultDegrees1); gd2.addNumericField("Scaling", defaultScale, 2); gd2.showDialog(); if (gd2.wasCanceled()) return null; defaultDegrees1 = gd2.getNextNumber(); defaultScale = gd2.getNextNumber(); // set the model as initial guess final SimilarityModel2D model = new SimilarityModel2D(); model.set( (float) (defaultScale * Math.cos(Math.toRadians(defaultDegrees1))), (float) (defaultScale * Math.sin(Math.toRadians(defaultDegrees1))), 0, 0); params.initialModel = model; } else { IJ.log("Unfortunately this is not supported this model yet ... "); IJ.log(params.model.getClass().toString()); return null; } } if (localization == 2 && !Descriptor_based_series_registration.getGaussianParameters(dimensionality, params)) return null; return params; }