示例#1
0
文件: Zone.java 项目: beaudin/bremo
 /**
  * Mit dieser Methode kann ein Massenelement eines Gases mit der Temperatur T_m der Zone mit der
  * Temperatur T_Zone zugemischt werden. Die sich ergebende Mischungstemperatur wird für
  * VERÄNDERLICHE CVs und ein adiabates System nach dem ersten HS berechnet. Das Volumen der Zone
  * bleibt Konstant --> das zugemischte Massenelement leistet Verschiebearbeit!
  *
  * @param m_Zu --> zugemischtes Massenelement [kg]
  * @param T_Zu --> Temperatur des zugemischten Massenelements [K]
  * @param s_Zu --> Zusammensetzung des Massenelements
  */
 public void massenElementZumischenKonstVol(double m_Zu, double T_Zu, Spezies s_Zu) {
   // adiabate Mischungstemperatur nach dem ersten Hauptsatz
   double Tm = 278.15, U1, U_zu, U1m, U_zum, Cvm1, Cv_zum, F, dF, Tm_buffer;
   U1 = gg_Zone.get_u_mass(T_Zone) * m_Zone;
   U_zu = s_Zu.get_u_mass(T_Zu) * m_Zu;
   int idx = 0;
   // Newtonverfahren für F(Tm)= U1(T1)+U2(T2)-U1(Tm)-U2(Tm)=0
   // mit dF/dT=-m1*Cv1(Tm)-m2*Cv2(Tm)
   do {
     Tm_buffer = Tm;
     U1m = gg_Zone.get_u_mass(Tm) * m_Zone;
     U_zum = s_Zu.get_u_mass(Tm) * m_Zu;
     Cvm1 = gg_Zone.get_cv_mass(Tm) * m_Zone;
     Cv_zum = s_Zu.get_cv_mass(Tm) * m_Zu;
     F = U1 + U_zu - U1m - U_zum;
     dF = -Cvm1 - Cv_zum;
     Tm = Tm - F / dF;
     idx++;
   } while (idx < 1000 && Math.abs(Tm - Tm_buffer) > 0.1);
   if (idx >= 1000) {
     try {
       throw new MiscException("t");
     } catch (MiscException me) {
       me.log_Warning("Mangelnde Konvergenz bei der Berechnung der Mischungstemperatur");
     }
   }
   T_Zone = Tm;
   // dieser Aufruf muss nach der Temperaturberechnung erfolgen da sich hier die Masse der Zone
   // ändert
   massenElementZumischen(m_Zu, s_Zu);
 }
示例#2
0
文件: Zone.java 项目: beaudin/bremo
  public static Zone zonenMischen(CasePara cp, Zone z1, Zone z2, boolean burns, int ID) {
    double p = z1.get_p(); // fuer beide Zonen gleich
    double m1 = z1.get_m();
    double T1 = z1.get_T();
    double V1 = z1.get_V();
    Spezies s1 = z1.get_ggZone();

    double m2 = z2.get_m();
    double T2 = z2.get_T();
    double V2 = z2.get_V();
    Spezies s2 = z2.get_ggZone();

    // Erzeugen einer Spezies die durch die Mischung der beiden ZonenSpezies entsteht
    GasGemisch s0 = new GasGemisch("zonenGemisch");
    Hashtable<Spezies, Double> ht0 = new Hashtable<Spezies, Double>(3);
    double mGes = m1 + m2;
    ht0.put(s1, m1 / mGes);
    ht0.put(s2, m2 / mGes);
    s0.set_Gasmischung_massenBruch(ht0);
    // Berechnung der Mischungstemperatur
    // 1.HS --> Kontrollraumgrenze wird um beide Zonen gelegt
    // Dann gilt: Umisch=U1+U2;
    double Umisch = m1 * s1.get_u_mass(T1) + m2 * s2.get_u_mass(T2);
    // Berechnung der Temperatur bei der die innere Energie von Spezies s0=Umisch ist.
    // Dies entspricht der Mischungstemperatur
    double T0 = s0.get_T4u_mass(Umisch / mGes);
    // Das Volumen beider Zonen wird addiert
    double V0 = V1 + V2;

    // Test ob alles stimmt
    double pV = z1.get_p() * V0;
    double mRT = mGes * T0 * s0.get_R();
    double T =
        (m1 * s1.get_cv_mass(T1) * T1 + m2 * s2.get_cv_mass(T2) * T2)
            / (m1 * s1.get_cv_mass(T1) + m2 * s2.get_cv_mass(T2));
    double deltaT = (T - T0) / T0 * 100;
    double T3 = pV / mGes / s0.get_R();
    double mRT2 = mGes * T * s0.get_R();
    double mRT3 = mGes * T3 * s0.get_R();
    // Fazit ueber die Gasgleichung geht es auch und zwar viel einfacher und genauer!

    Zone z0 = new Zone(cp, p, V0, T0, mGes, s0, burns, ID);
    return z0;
  }