/** * Goal-driven recursive (depth-first, exhaustive) search with backtracking * * @param problem * @param algorithm * @param subtaskRelsInPath * @param depth */ private boolean subtaskPlanningImpl( PlanningContext context, Set<Rel> relsWithSubtasks, EvaluationAlgorithm algorithm, LinkedList<Rel> subtaskRelsInPath, int depth) { Set<Rel> relsWithSubtasksCopy = new LinkedHashSet<Rel>(relsWithSubtasks); Set<Rel> relsWithSubtasksToRemove = new LinkedHashSet<Rel>(); boolean firstMLB = true; // start building Maximal Linear Branch (MLB) MLB: while (!relsWithSubtasksCopy.isEmpty()) { if (isSubtaskLoggingOn()) { String print = p(depth) + "Starting new MLB with: "; for (Rel rel : relsWithSubtasksCopy) { print += "\n" + p(depth) + " " + rel.getParent().getFullName() + " : " + rel.getDeclaration(); } /* print += "\n" + p( depth ) + " All remaining rels in problem:"; for ( Rel rel : problem.getAllRels() ) { print += "\n" + p( depth ) + " " + rel.getParentObjectName() + " : " + rel.getDeclaration(); } print += "\n" + p( depth ) + "All found variables: "; for ( Var var : problem.getFoundVars() ) { print += "\n" + p( depth ) + " " + var.toString(); } */ logger.debug(print); } // if this is a first attempt to construct an MLB to solve a subtask(i.e. depth>0), // do not invoke linear planning because it has already been done if ((depth == 0) || !firstMLB) { boolean solvedIntermediately = linearForwardSearch(context, algorithm, true); // Having constructed some MLBs the (sub)problem may be solved // and there is no need in wasting precious time planning unnecessary branches if (solvedIntermediately && ( // on the top level optimize only if computing goals (depth == 0 && !computeAll) // otherwise (inside subtasks) always optimize || (depth != 0))) { // If the problem is solved, optimize and return if (!isOptDisabled) Optimizer.optimize(context, algorithm); return true; } } else { firstMLB = false; } // or children OR: for (Iterator<Rel> subtaskRelIterator = relsWithSubtasksCopy.iterator(); subtaskRelIterator.hasNext(); ) { Rel subtaskRel = subtaskRelIterator.next(); if (isSubtaskLoggingOn()) logger.debug( p(depth) + "OR: depth: " + (depth + 1) + " rel - " + subtaskRel.getParent().getFullName() + " : " + subtaskRel.getDeclaration()); if (subtaskRel.equals(subtaskRelsInPath.peekLast()) || (!context.isRelReadyToUse(subtaskRel)) || context.getFoundVars().containsAll(subtaskRel.getOutputs()) || (!isSubtaskRepetitionAllowed && subtaskRelsInPath.contains(subtaskRel))) { if (isSubtaskLoggingOn()) { logger.debug(p(depth) + "skipped"); if (!context.isRelReadyToUse(subtaskRel)) { logger.debug(p(depth) + "because it has unknown inputs"); // TODO print unknown } else if (context.getFoundVars().containsAll(subtaskRel.getOutputs())) { logger.debug(p(depth) + "because all outputs in FoundVars"); } else if (subtaskRel.equals(subtaskRelsInPath.peekLast())) { logger.debug(p(depth) + "because it is nested in itself"); } else if (!isSubtaskRepetitionAllowed && subtaskRelsInPath.contains(subtaskRel)) { logger.debug( p(depth) + "This rel with subtasks is already in use, path: " + subtaskRelsInPath); } } continue OR; } LinkedList<Rel> newPath = new LinkedList<Rel>(subtaskRelsInPath); newPath.add(subtaskRel); PlanningResult result = new PlanningResult(subtaskRel, true); // this is true if all subtasks are solvable boolean allSolved = true; // and children AND: for (SubtaskRel subtask : subtaskRel.getSubtasks()) { if (isSubtaskLoggingOn()) logger.debug(p(depth) + "AND: subtask - " + subtask); EvaluationAlgorithm sbtAlgorithm = null; ////////////////////// INDEPENDENT SUBTASK//////////////////////////////////////// if (subtask.isIndependent()) { if (isSubtaskLoggingOn()) logger.debug("Independent!!!"); if (subtask.isSolvable() == null) { if (isSubtaskLoggingOn()) logger.debug("Start solving independent subtask " + subtask.getDeclaration()); // independent subtask is solved only once Problem problemContext = subtask.getContext(); DepthFirstPlanner planner = new DepthFirstPlanner(); planner.indSubtasks = indSubtasks; planner.nested = true; sbtAlgorithm = planner.invokePlaning(problemContext, isOptDisabled); PlanningContext indCntx = problemContext.getCurrentContext(); boolean solved = indCntx.getFoundVars().containsAll(indCntx.getAllGoals()); if (solved) { subtask.setSolvable(Boolean.TRUE); indSubtasks.put(subtask, sbtAlgorithm); if (isSubtaskLoggingOn()) logger.debug("Solved " + subtask.getDeclaration()); } else { subtask.setSolvable(Boolean.FALSE); if (RuntimeProperties.isLogInfoEnabled()) { logger.debug("Unable to solve " + subtask.getDeclaration()); } } allSolved &= solved; } else if (subtask.isSolvable() == Boolean.TRUE) { if (isSubtaskLoggingOn()) logger.debug("Already solved"); allSolved &= true; sbtAlgorithm = indSubtasks.get(subtask); } else { if (isSubtaskLoggingOn()) logger.debug("Not solvable"); allSolved &= false; } if (isSubtaskLoggingOn()) logger.debug("End of independent subtask " + subtask); if (!allSolved) { continue OR; } assert sbtAlgorithm != null; result.addSubtaskAlgorithm(subtask, sbtAlgorithm); } ////////////////////// DEPENDENT SUBTASK////////////////////////////////////// else { // lets clone the environment PlanningContext newContext = prepareNewContext(context, subtask); sbtAlgorithm = new EvaluationAlgorithm(); // during linear planning, if some goals are found, they are removed from the set // "goals" boolean solved = linearForwardSearch( newContext, sbtAlgorithm, // do not optimize here, because the solution may require additional rels with // subtasks true); if (solved) { if (isSubtaskLoggingOn()) logger.debug(p(depth) + "SOLVED subtask: " + subtask); if (!isOptDisabled) { // if a subtask has been solved, optimize its algorithm Optimizer.optimize(newContext, sbtAlgorithm); } result.addSubtaskAlgorithm(subtask, sbtAlgorithm); allSolved &= solved; continue AND; } else if (!solved && (depth == maxDepth)) { if (isSubtaskLoggingOn()) logger.debug(p(depth) + "NOT SOLVED and cannot go any deeper, subtask: " + subtask); continue OR; } if (isSubtaskLoggingOn()) logger.debug(p(depth) + "Recursing deeper"); solved = subtaskPlanningImpl(newContext, relsWithSubtasks, sbtAlgorithm, newPath, depth + 1); if (isSubtaskLoggingOn()) logger.debug(p(depth) + "Back to depth " + (depth + 1)); // the linear planning has been performed at the end of MLB on the depth+1, // if the problem was solved, there is no need to run linear planning again if ((solved || (solved = linearForwardSearch(newContext, sbtAlgorithm, true))) && !isOptDisabled) { // if solved, optimize here with full list of goals in order to get rid of // unnecessary subtask instances and other relations Optimizer.optimize(newContext, sbtAlgorithm); } if (isSubtaskLoggingOn()) logger.debug(p(depth) + (solved ? "" : "NOT") + " SOLVED subtask: " + subtask); allSolved &= solved; // if at least one subtask is not solvable, try another // branch if (!allSolved) { continue OR; } result.addSubtaskAlgorithm(subtask, sbtAlgorithm); } } // AND if (allSolved) { algorithm.add(result); Set<Var> newVars = new LinkedHashSet<Var>(); unfoldVarsToSet(subtaskRel.getOutputs(), newVars); context.getKnownVars().addAll(newVars); context.getFoundVars().addAll(newVars); subtaskRelIterator.remove(); if (isSubtaskLoggingOn()) { logger.debug( p(depth) + "SOLVED ALL SUBTASKS for " + subtaskRel.getParent().getFullName() + " : " + subtaskRel.getDeclaration()); logger.debug(p(depth) + "Updating the problem graph and continuing building new MLB"); } // this is used for incremental dfs if (depth == 0) { relsWithSubtasksToRemove.add(subtaskRel); } continue MLB; } if (isSubtaskLoggingOn()) logger.debug( p(depth) + "NOT SOLVED ALL subtasks, removing from path " + subtaskRel.getParent().getFullName() + " : " + subtaskRel.getDeclaration()); newPath.remove(subtaskRel); } // end OR // exit loop because there are no more rels with subtasks to be // applied // (i.e. no more rels can introduce new variables into the // algorithm) if (isSubtaskLoggingOn()) logger.debug(p(depth) + "No more MLB can be constructed"); break MLB; } // incremental dfs, remove solved subtasks if (depth == 0) { relsWithSubtasks.removeAll(relsWithSubtasksToRemove); } return false; }
public boolean execute() { if (CDState.getCycle() % period != 0) return false; MycoCast mycocast = (MycoCast) Network.get(0).getProtocol(mycocastPid); int bio = mycocast.countBiomass(); int ext = mycocast.countExtending(); int bra = mycocast.countBranching(); int imm = mycocast.countImmobile(); // Update vertices Set<MycoNode> activeNodes = new HashSet<MycoNode>(); for (int i = 0; i < Network.size(); i++) { MycoNode n = (MycoNode) Network.get(i); activeNodes.add(n); HyphaData data = n.getHyphaData(); // if (data.isBiomass()) { continue; } if (graph.containsVertex(n)) { graph.removeVertex(n); } if (!graph.containsVertex(n)) { graph.addVertex(n); } } Set<MycoNode> jungNodes = new HashSet<MycoNode>(graph.getVertices()); jungNodes.removeAll(activeNodes); for (MycoNode n : jungNodes) { graph.removeVertex(n); } // Update edges for (int i = 0; i < Network.size(); i++) { MycoNode n = (MycoNode) Network.get(i); HyphaData data = n.getHyphaData(); HyphaLink link = n.getHyphaLink(); synchronized (graph) { // We now add in all links and tune out display in Visualizer java.util.List<MycoNode> neighbors = (java.util.List<MycoNode>) link.getNeighbors(); //// Adding only links to hypha thins out links to biomass // (java.util.List<MycoNode>) link.getHyphae(); Collection<MycoNode> jungNeighbors = graph.getNeighbors(n); // Remove edges from Jung graph that are not in peersim graph for (MycoNode o : jungNeighbors) { if (!neighbors.contains(o)) { MycoEdge edge = graph.findEdge(n, o); while (edge != null) { graph.removeEdge(edge); edge = graph.findEdge(n, o); } } } // Add missing edges to Jung graph that are in peersim graph for (MycoNode o : neighbors) { if (graph.findEdge(n, o) == null) { MycoEdge edge = new MycoEdge(); graph.addEdge(edge, n, o, EdgeType.DIRECTED); } } } // log.finest("VERTICES: " + graph.getVertices()); // log.finest("EDGES: " + graph.getEdges()); } for (ChangeListener cl : changeListeners) { cl.stateChanged(new ChangeEvent(graph)); } if (walking) { try { Thread.sleep(walkDelay); } catch (InterruptedException e) { } stepBlocked = false; } try { while (stepBlocked && !noBlock) { synchronized (JungGraphObserver.class) { JungGraphObserver.class.wait(); } } } catch (InterruptedException e) { stepBlocked = true; } stepBlocked = true; // System.out.println(graph.toString()); return false; }