/* * Matrix mult but with min-plus, and iterative. Each min-plus operation * that changes the path inserts it into a new queue */ public SparseMatrix apsp() { SparseMatrix shortestPaths = new SparseMatrix(this); SparseMatrix currentPairs = new SparseMatrix(this.rowDim, this.colDim); SparseMatrix newPairs = new SparseMatrix(this.rowDim, this.colDim); newPairs = new SparseMatrix(this); for (int d = 0; d < this.rowDim; d++) { shortestPaths.set(d, d, 0.0); } for (int d = 0; d < this.rowDim; d++) { newPairs.set(d, d, 0.0); } while (!newPairs.isEmpty()) { currentPairs = new SparseMatrix(newPairs); newPairs = new SparseMatrix(this.rowDim, this.colDim); for (int r : currentPairs.rows) { Counter row = currentPairs.getRow(r); for (int c : row.keySet()) { Counter oRow = this.getRow(c); for (int oc : oRow.keySet()) { double pathLength = currentPairs.get(r, c) + oRow.get(oc); if (pathLength < shortestPaths.getPath(r, oc)) { newPairs.set(r, oc, pathLength); shortestPaths.set(r, oc, pathLength); } } } } } return shortestPaths; }
public static Counter ConstrainedEig(SparseMatrix mat, SparseMatrix orthogMat) { double trimEps = 0; int iterLimit = 10000; long start; long end; Counter vector = new Counter(); int vecLen = mat.colDim; for (int i = 0; i < vecLen; i++) { // vector.add(i, 1.0/Math.sqrt(vecLen)); vector.add(i, Math.random() - 0.5); } Counter oldVector = new Counter(); // vector = mat.multiply(vector); // for(int r: orthogMat.rows){ // Counter orthogRow = orthogMat.getRow(r); // vector.orthogonalize(orthogRow); //// System.out.println(vector.dot(orthogRow)); // } double norm = 0; double sim = 0; double diff = 1.0; double diffNeg = 1.0; int t = 0; start = System.currentTimeMillis(); while (diff > Math.pow(10.0, -16.0) && diffNeg > Math.pow(10.0, -16.0) && t < iterLimit) { t += 1; // vector.trimKeys(trimEps); oldVector = new Counter(vector); vector = mat.multiply(vector); for (int r : orthogMat.rows) { Counter orthogRow = orthogMat.getRow(r); // System.out.println("before: "+vector.dot(orthogRow)); vector.orthogonalize(orthogRow); // System.out.println("after: "+vector.dot(orthogRow)); } norm = 0; norm = vector.norm(); vector.multiply(1.0 / norm); diff = 0; diffNeg = 0; Set<Integer> vecOldUnion = vector.concreteKeySet(); vecOldUnion.addAll(oldVector.concreteKeySet()); for (int i : vecOldUnion) { // for(int i = 0; i < mat.colDim; i++){ diff += (oldVector.get(i) - vector.get(i)) * (oldVector.get(i) - vector.get(i)); diffNeg += (oldVector.get(i) + vector.get(i)) * (oldVector.get(i) + vector.get(i)); } sim = vector.dot(oldVector); // System.out.println(diff+" "+diffNeg+" "+sim+" "+norm+" // "+vector.dot(orthogMat.getRow(0))); // System.out.println(vector.toString()); // System.out.println(oldVector.toString()); } System.out.println(norm + " " + orthogMat.rows.size() + " " + sim); // System.out.println(mat.toStringValues()); end = System.currentTimeMillis(); System.out.println("Time: " + (end - start) + " iterations: " + t); return vector; }
public void removeEntries(SparseMatrix redundant) { for (int r : redundant.getRows()) { Counter row = redundant.getRow(r); for (int c : row.keySet()) { this.remove(r, c); } } }
public SparseMatrix add(SparseMatrix other) { SparseMatrix sum = new SparseMatrix(this.rowDim, this.colDim); sum = new SparseMatrix(this); for (int r : other.rows) { sum.addRow(r, other.getRow(r)); } return sum; }
public SparseMatrix multiply(SparseMatrix other) { SparseMatrix mult = new SparseMatrix(this.rowDim, other.colDim); for (int r : rows) { // System.out.println("multiplying row: "+ r); Counter row = this.getRow(r); // for(int c: other.cols){ // Counter col = other.getCol(c); // double dotProd = row.dot(col); // System.out.println(row.toString()+" "+col.toString()+" "+dotProd); // mult.set(r, c, dotProd); // } for (int c : row.keySet()) { Counter oRow = other.getRow(c); for (int oc : oRow.keySet()) { mult.add(r, oc, row.get(c) * oRow.get(oc)); } } } return mult; }