@Test public void test2() { RandomUtil.getInstance().setSeed(2999983L); int sampleSize = 1000; List<Node> variableNodes = new ArrayList<>(); ContinuousVariable x1 = new ContinuousVariable("X1"); ContinuousVariable x2 = new ContinuousVariable("X2"); ContinuousVariable x3 = new ContinuousVariable("X3"); ContinuousVariable x4 = new ContinuousVariable("X4"); ContinuousVariable x5 = new ContinuousVariable("X5"); variableNodes.add(x1); variableNodes.add(x2); variableNodes.add(x3); variableNodes.add(x4); variableNodes.add(x5); Graph _graph = new EdgeListGraph(variableNodes); SemGraph graph = new SemGraph(_graph); graph.addDirectedEdge(x1, x3); graph.addDirectedEdge(x2, x3); graph.addDirectedEdge(x3, x4); graph.addDirectedEdge(x2, x4); graph.addDirectedEdge(x4, x5); graph.addDirectedEdge(x2, x5); SemPm semPm = new SemPm(graph); SemIm semIm = new SemIm(semPm); DataSet dataSet = semIm.simulateData(sampleSize, false); print(semPm); GeneralizedSemPm _semPm = new GeneralizedSemPm(semPm); GeneralizedSemIm _semIm = new GeneralizedSemIm(_semPm, semIm); DataSet _dataSet = _semIm.simulateDataMinimizeSurface(sampleSize, false); print(_semPm); // System.out.println(_dataSet); for (int j = 0; j < dataSet.getNumColumns(); j++) { double[] col = dataSet.getDoubleData().getColumn(j).toArray(); double[] _col = _dataSet.getDoubleData().getColumn(j).toArray(); double mean = StatUtils.mean(col); double _mean = StatUtils.mean(_col); double variance = StatUtils.variance(col); double _variance = StatUtils.variance(_col); assertEquals(mean, _mean, 0.3); assertEquals(1.0, variance / _variance, .2); } }
@Test public void test8() { RandomUtil.getInstance().setSeed(29999483L); Node x = new GraphNode("X"); Node y = new GraphNode("Y"); List<Node> nodes = new ArrayList<>(); nodes.add(x); nodes.add(y); Graph graph = new EdgeListGraphSingleConnections(nodes); graph.addDirectedEdge(x, y); SemPm spm = new SemPm(graph); SemIm sim = new SemIm(spm); sim.setEdgeCoef(x, y, 20); sim.setErrVar(x, 1); sim.setErrVar(y, 1); GeneralizedSemPm pm = new GeneralizedSemPm(spm); GeneralizedSemIm im = new GeneralizedSemIm(pm, sim); print(im); try { pm.setParameterEstimationInitializationExpression("b1", "U(10, 30)"); pm.setParameterEstimationInitializationExpression("T1", "U(.1, 3)"); pm.setParameterEstimationInitializationExpression("T2", "U(.1, 3)"); } catch (ParseException e) { e.printStackTrace(); } DataSet data = im.simulateDataRecursive(1000, false); GeneralizedSemEstimator estimator = new GeneralizedSemEstimator(); GeneralizedSemIm estIm = estimator.estimate(pm, data); print(estIm); // System.out.println(estimator.getReport()); double aSquaredStar = estimator.getaSquaredStar(); assertEquals(0.69, aSquaredStar, 0.01); }
private double getClusterP2(List<Node> c) { Graph g = new EdgeListGraph(c); Node l = new GraphNode("L"); l.setNodeType(NodeType.LATENT); g.addNode(l); for (Node n : c) { g.addDirectedEdge(l, n); } SemPm pm = new SemPm(g); SemEstimator est; if (dataModel instanceof DataSet) { est = new SemEstimator((DataSet) dataModel, pm, new SemOptimizerEm()); } else { est = new SemEstimator((CovarianceMatrix) dataModel, pm, new SemOptimizerEm()); } SemIm estIm = est.estimate(); double pValue = estIm.getPValue(); return pValue == 1 ? Double.NaN : pValue; }
@Test public void test5() { RandomUtil.getInstance().setSeed(29999483L); List<Node> nodes = new ArrayList<>(); for (int i1 = 0; i1 < 5; i1++) { nodes.add(new ContinuousVariable("X" + (i1 + 1))); } Graph graph = new Dag(GraphUtils.randomGraph(nodes, 0, 5, 30, 15, 15, false)); SemPm semPm = new SemPm(graph); SemIm semIm = new SemIm(semPm); semIm.simulateDataReducedForm(1000, false); GeneralizedSemPm pm = new GeneralizedSemPm(semPm); GeneralizedSemIm im = new GeneralizedSemIm(pm, semIm); TetradVector e = new TetradVector(5); for (int i = 0; i < e.size(); i++) { e.set(i, RandomUtil.getInstance().nextNormal(0, 1)); } TetradVector record1 = semIm.simulateOneRecord(e); TetradVector record2 = im.simulateOneRecord(e); print("XXX1" + e); print("XXX2" + record1); print("XXX3" + record2); for (int i = 0; i < record1.size(); i++) { assertEquals(record1.get(i), record2.get(i), 1e-10); } }
/** * Constructs a new standardized SEM IM from the freeParameters in the given SEM IM. * * @param im Stop asking me for these things! The given SEM IM!!! * @param initialization CALCULATE_FROM_SEM if the initial values will be calculated from the * given SEM IM; INITIALIZE_FROM_DATA if data will be simulated from the given SEM, * standardized, and estimated. */ public StandardizedSemIm(SemIm im, Initialization initialization) { this.semPm = new SemPm(im.getSemPm()); this.semGraph = new SemGraph(semPm.getGraph()); semGraph.setShowErrorTerms(true); if (semGraph.existsDirectedCycle()) { throw new IllegalArgumentException("The cyclic case is not handled."); } if (initialization == Initialization.CALCULATE_FROM_SEM) { // This code calculates the new coefficients directly from the old ones. edgeParameters = new HashMap<Edge, Double>(); List<Node> nodes = im.getVariableNodes(); TetradMatrix impliedCovar = im.getImplCovar(true); for (Parameter parameter : im.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); int aindex = nodes.indexOf(a); int bindex = nodes.indexOf(b); double vara = impliedCovar.get(aindex, aindex); double stda = Math.sqrt(vara); double varb = impliedCovar.get(bindex, bindex); double stdb = Math.sqrt(varb); double oldCoef = im.getEdgeCoef(a, b); double newCoef = (stda / stdb) * oldCoef; edgeParameters.put(Edges.directedEdge(a, b), newCoef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } else { // This code estimates the new coefficients from simulated data from the old model. DataSet dataSet = im.simulateData(1000, false); TetradMatrix _dataSet = dataSet.getDoubleData(); _dataSet = DataUtils.standardizeData(_dataSet); DataSet dataSetStandardized = ColtDataSet.makeData(dataSet.getVariables(), _dataSet); SemEstimator estimator = new SemEstimator(dataSetStandardized, im.getSemPm()); SemIm imStandardized = estimator.estimate(); edgeParameters = new HashMap<Edge, Double>(); for (Parameter parameter : imStandardized.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); double coef = imStandardized.getEdgeCoef(a, b); edgeParameters.put(Edges.directedEdge(a, b), coef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = -im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } this.measuredNodes = Collections.unmodifiableList(semPm.getMeasuredNodes()); }
/** Generates a simple exemplar of this class to test serialization. */ public static StandardizedSemIm serializableInstance() { return new StandardizedSemIm(SemIm.serializableInstance()); }