/** * This method is required if the AlgorithmPerformed interface is implemented. It is called by the * algorithms when it has completed or failed to to complete, so that the dialog can be display * the result image and/or clean up. * * @param algorithm Algorithm that caused the event. */ public void algorithmPerformed(AlgorithmBase algorithm) { if (algorithm instanceof AlgorithmNonlocalMeansFilter) { image.clearMask(); if ((nlMeansFilterAlgo.isCompleted() == true) && (resultImage != null)) { updateFileInfo(image, resultImage); resultImage.clearMask(); // The algorithm has completed and produced a new image to be displayed. try { new ViewJFrameImage(resultImage, null, new Dimension(610, 200)); } catch (OutOfMemoryError error) { MipavUtil.displayError("Out of memory: unable to open new frame"); } } else if (resultImage == null) { // These next lines set the titles in all frames where the source image is displayed to // image name so as to indicate that the image is now unlocked! // The image frames are enabled and then registed to the userinterface. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); for (int i = 0; i < imageFrames.size(); i++) { ((Frame) (imageFrames.elementAt(i))).setTitle(titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(true); if (((Frame) (imageFrames.elementAt(i))) != parentFrame) { userInterface.registerFrame((Frame) (imageFrames.elementAt(i))); } } if (parentFrame != null) { userInterface.registerFrame(parentFrame); } image.notifyImageDisplayListeners(null, true); } else if (resultImage != null) { // algorithm failed but result image still has garbage resultImage.disposeLocal(); // clean up memory resultImage = null; } } if (algorithm.isCompleted()) { insertScriptLine(); } // save the completion status for later setComplete(algorithm.isCompleted()); nlMeansFilterAlgo.finalize(); nlMeansFilterAlgo = null; dispose(); }
/** Starts the program. */ public void runAlgorithm() { int[] destExtents = null; if (srcImage == null) { displayError("Source Image is null"); return; } if (srcImage.getNDims() == 2) { makeKernels2D(); } else if ((srcImage.getNDims() == 3) && (image25D == false)) { makeKernels3D(); } else if ((srcImage.getNDims() == 3) && (image25D == true)) { makeKernels2D(); } try { if (srcImage.getNDims() == 2) { destExtents = new int[2]; destExtents[0] = srcImage.getExtents()[0]; // X dim destExtents[1] = srcImage.getExtents()[1]; // Y dim } else if (srcImage.getNDims() == 3) { destExtents = new int[3]; destExtents[0] = srcImage.getExtents()[0]; // X dim destExtents[1] = srcImage.getExtents()[1]; // Y dim destExtents[2] = srcImage.getExtents()[2]; // Z dim } zXMask = new ModelImage(ModelImage.UBYTE, destExtents, " Edges"); } catch (OutOfMemoryError e) { destImage = null; srcImage = null; zXMask.disposeLocal(); zXMask = null; errorCleanUp("Algorithm EdgeLapSep : Out of memory", true); return; } if (destImage != null) { // NEW if (srcImage.getNDims() == 2) { calcStoreInDest2D(1, zeroDetectionType); } else if ((srcImage.getNDims() == 3) && (image25D == false)) { calcStoreInDest3D(zeroDetectionType); } else if ((srcImage.getNDims() == 3) && (image25D == true)) { calcStoreInDest2D(srcImage.getExtents()[2], zeroDetectionType); } } if (threadStopped) { finalize(); return; } }
/** dispose memory. */ public void disposeLocal() { if (mathAlgo != null) { mathAlgo.finalize(); mathAlgo = null; } if (image != null) { image.disposeLocal(); } image = null; if (resultImage != null) { resultImage.disposeLocal(); } resultImage = null; }
/** * Returns the name of an image output by this algorithm, the image returned depends on the * parameter label given (which can be used to retrieve the image object from the image registry). * * @param imageParamName The output image parameter label for which to get the image name. * @return The image name of the requested output image parameter label. */ public String getOutputImageName(final String imageParamName) { if (imageParamName.equals(AlgorithmParameters.RESULT_IMAGE)) { if (getResultImage() != null) { // algo produced a new result image return getResultImage().getImageName(); } else { // algo was done in place return image.getImageName(); } } Preferences.debug( "Unrecognized output image parameter: " + imageParamName + "\n", Preferences.DEBUG_SCRIPTING); return null; }
/** {@inheritDoc} */ protected void setGUIFromParams() { image = scriptParameters.retrieveInputImage(); userInterface = ViewUserInterface.getReference(); parentFrame = image.getParentFrame(); if (scriptParameters.doOutputNewImage()) { setDisplayLocNew(); } else { setDisplayLocReplace(); } searchWindowSide = scriptParameters.getParams().getInt("search_window_side"); similarityWindowSide = scriptParameters.getParams().getInt("similarity_window_side"); noiseStandardDeviation = scriptParameters.getParams().getFloat("noise_standard_deviation"); degreeOfFiltering = scriptParameters.getParams().getFloat("degree_of_filtering"); doRician = scriptParameters.getParams().getBoolean("do_rician"); image25D = scriptParameters.doProcess3DAs25D(); }
/** {@inheritDoc} */ protected void setGUIFromParams() { image = scriptParameters.retrieveInputImage(1); userInterface = ViewUserInterface.getReference(); parentFrame = image.getParentFrame(); if (scriptParameters.doOutputNewImage()) { setDisplayLocNew(); } else { // replace processing not supported.. // setDisplayLocReplace(); setDisplayLocNew(); } subXDim = scriptParameters.getParams().getInt("sub_x_dim"); subYDim = scriptParameters.getParams().getInt("sub_y_dim"); numberOfImagesInMosaic = scriptParameters.getParams().getInt("number_of_images_in_mosaic"); }
/** * Use the GUI results to set up the variables needed to run the algorithm. * * @return <code>true</code> if parameters set successfully, <code>false</code> otherwise. */ private boolean setVariables() { String tmpStr; System.gc(); if (replaceImage.isSelected()) { displayLoc = REPLACE; } else if (newImage.isSelected()) { displayLoc = NEW; } tmpStr = textSearchWindowSide.getText(); if (testParameter(tmpStr, 5, 101)) { searchWindowSide = Integer.valueOf(tmpStr).intValue(); } else { MipavUtil.displayError("Search window side must be between 5 and 101"); textSearchWindowSide.requestFocus(); textSearchWindowSide.selectAll(); return false; } if ((searchWindowSide % 2) == 0) { MipavUtil.displayError("Search window side must be an odd number"); textSearchWindowSide.requestFocus(); textSearchWindowSide.selectAll(); return false; } tmpStr = textSimilarityWindowSide.getText(); if (testParameter(tmpStr, 3, 99)) { similarityWindowSide = Integer.valueOf(tmpStr).intValue(); } else { MipavUtil.displayError("Similarity window side must be between 3 and 99"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } if ((similarityWindowSide % 2) == 0) { MipavUtil.displayError("Similarity window side must be an odd number"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } if (similarityWindowSide >= searchWindowSide) { MipavUtil.displayError("Similarity window side must be less than search window side"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } tmpStr = textNoiseStandardDeviation.getText(); if (testParameter(tmpStr, 0.001, 1000.0)) { noiseStandardDeviation = Float.valueOf(tmpStr).floatValue(); } else { MipavUtil.displayError("Radius must be between 0.001 and 1000.0"); textNoiseStandardDeviation.requestFocus(); textNoiseStandardDeviation.selectAll(); return false; } doRician = doRicianCheckBox.isSelected(); if (doRician) { tmpStr = textDegree.getText(); if (testParameter(tmpStr, 1.0, 10.0)) { degreeOfFiltering = Float.valueOf(tmpStr).floatValue(); } else { MipavUtil.displayError("Degree of filtering must be between 1.0 and 10.0"); textDegree.requestFocus(); textDegree.selectAll(); } } if (image.getNDims() > 2) { image25D = image25DCheckBox.isSelected(); } return true; }
/** * Initializes the GUI by creating the components, placing them in the dialog, and displaying * them. */ private void init() { setForeground(Color.black); setTitle("Nonlocal Means Filter"); JPanel mainPanel; mainPanel = new JPanel(); mainPanel.setBorder(BorderFactory.createEmptyBorder(3, 3, 3, 3)); mainPanel.setLayout(new GridBagLayout()); GridBagConstraints gbc = new GridBagConstraints(); gbc.gridwidth = 1; gbc.gridheight = 1; gbc.anchor = GridBagConstraints.WEST; gbc.weightx = 1; gbc.insets = new Insets(3, 3, 3, 3); gbc.gridx = 0; gbc.gridy = 0; gbc.fill = GridBagConstraints.HORIZONTAL; paramPanel = new JPanel(new GridBagLayout()); paramPanel.setForeground(Color.black); paramPanel.setBorder(buildTitledBorder("Parameters")); mainPanel.add(paramPanel, gbc); GridBagConstraints gbc2 = new GridBagConstraints(); gbc2.gridwidth = 1; gbc2.gridheight = 1; gbc2.anchor = GridBagConstraints.WEST; gbc2.weightx = 1; gbc2.insets = new Insets(3, 3, 3, 3); gbc2.gridx = 0; gbc2.gridy = 0; gbc2.fill = GridBagConstraints.HORIZONTAL; labelSearchWindowSide = createLabel("Search window side (odd)"); paramPanel.add(labelSearchWindowSide, gbc2); gbc2.gridx = 1; textSearchWindowSide = createTextField("15"); paramPanel.add(textSearchWindowSide, gbc2); gbc2.gridx = 0; gbc2.gridy = 1; labelSimilarityWindowSide = createLabel("Similarity window side (odd) "); paramPanel.add(labelSimilarityWindowSide, gbc2); gbc2.gridx = 1; textSimilarityWindowSide = createTextField("7"); paramPanel.add(textSimilarityWindowSide, gbc2); gbc2.gridx = 0; gbc2.gridy = 2; labelNoiseStandardDeviation = createLabel("Noise standard deviation "); paramPanel.add(labelNoiseStandardDeviation, gbc2); gbc2.gridx = 1; textNoiseStandardDeviation = createTextField("10.0"); paramPanel.add(textNoiseStandardDeviation, gbc2); gbc2.gridx = 0; gbc2.gridy = 3; labelDegree = createLabel("Degree of filtering "); labelDegree.setEnabled(doRician); paramPanel.add(labelDegree, gbc2); gbc2.gridx = 1; textDegree = createTextField("1.414"); textDegree.setEnabled(doRician); paramPanel.add(textDegree, gbc2); gbc2.gridx = 0; gbc2.gridy = 4; doRicianCheckBox = new JCheckBox("Deal with Rician noise in MRI"); doRicianCheckBox.setFont(serif12); doRicianCheckBox.setSelected(false); doRicianCheckBox.addActionListener(this); paramPanel.add(doRicianCheckBox, gbc2); if (image.getNDims() > 2) { gbc2.gridx = 0; gbc2.gridy = 5; gbc2.gridwidth = 2; image25DCheckBox = new JCheckBox("Process each slice independently (2.5D)"); image25DCheckBox.setFont(serif12); paramPanel.add(image25DCheckBox, gbc2); image25DCheckBox.setSelected(false); } // if (image.getNDims > 2) JPanel outputOptPanel = new JPanel(new GridLayout(1, 2)); destinationPanel = new JPanel(new BorderLayout()); destinationPanel.setForeground(Color.black); destinationPanel.setBorder(buildTitledBorder("Destination")); outputOptPanel.add(destinationPanel); destinationGroup = new ButtonGroup(); newImage = new JRadioButton("New image", true); newImage.setBounds(10, 16, 120, 25); newImage.setFont(serif12); destinationGroup.add(newImage); destinationPanel.add(newImage, BorderLayout.NORTH); replaceImage = new JRadioButton("Replace image", false); replaceImage.setFont(serif12); destinationGroup.add(replaceImage); destinationPanel.add(replaceImage, BorderLayout.CENTER); // Only if the image is unlocked can it be replaced. if (image.getLockStatus() == ModelStorageBase.UNLOCKED) { replaceImage.setEnabled(true); } else { replaceImage.setEnabled(false); } gbc.gridx = 0; gbc.gridy = 1; mainPanel.add(outputOptPanel, gbc); mainDialogPanel.add(mainPanel, BorderLayout.CENTER); mainDialogPanel.add(buildButtons(), BorderLayout.SOUTH); getContentPane().add(mainDialogPanel); pack(); setResizable(true); // setVisible(true); System.gc(); }
/** * Once all the necessary variables are set, call the Nonlocal Means filter algorithm based on * what type of image this is and whether or not there is a separate destination image. */ protected void callAlgorithm() { String name = makeImageName(image.getImageName(), "_NonlocalMeans"); int[] destExtents; if (image.getNDims() == 2) { // source image is 2D destExtents = new int[2]; destExtents[0] = image.getExtents()[0]; // X dim destExtents[1] = image.getExtents()[1]; // Y dim } else { destExtents = new int[3]; destExtents[0] = image.getExtents()[0]; destExtents[1] = image.getExtents()[1]; destExtents[2] = image.getExtents()[2]; } if (displayLoc == NEW) { try { // Make result image of float type if (image.isColorImage()) { resultImage = new ModelImage(ModelImage.ARGB, destExtents, name); } else { resultImage = new ModelImage(ModelImage.FLOAT, destExtents, name); } // resultImage = (ModelImage)image.clone(); // resultImage.setImageName(name); // Make algorithm nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( resultImage, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide dialog setVisible(false); if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); if (resultImage != null) { resultImage.disposeLocal(); // Clean up memory of result image resultImage = null; } return; } } else { try { // No need to make new image space because the user has choosen to replace the source image // Make the algorithm class nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( null, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide the dialog since the algorithm is about to run. setVisible(false); // These next lines set the titles in all frames where the source image is displayed to // "locked - " image name so as to indicate that the image is now read/write locked! // The image frames are disabled and then unregisted from the userinterface until the // algorithm has completed. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); titles = new String[imageFrames.size()]; for (int i = 0; i < imageFrames.size(); i++) { titles[i] = ((Frame) (imageFrames.elementAt(i))).getTitle(); ((Frame) (imageFrames.elementAt(i))).setTitle("Locked: " + titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(false); userInterface.unregisterFrame((Frame) (imageFrames.elementAt(i))); } if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); return; } } }
/** * This function produces the EdgeLap of input image. * * @param detectionType the type of zero crossing detection to perform */ private void calcStoreInDest3D(int detectionType) { int nImages; int length, totalLength; float[] buffer, xResultBuffer, yResultBuffer, zResultBuffer; int start; float[] sliceBuffer; try { destImage.setLock(); } catch (IOException error) { errorCleanUp("Algorithm EdgeLapSep: Image(s) locked", false); return; } try { length = srcImage.getSliceSize(); totalLength = srcImage.getSliceSize() * srcImage.getExtents()[2]; nImages = srcImage.getExtents()[2]; buffer = new float[totalLength]; sliceBuffer = new float[length]; srcImage.exportData(0, totalLength, buffer); // locks and releases lock // fireProgressStateChanged(srcImage.getImageName(), "Calculating Zero X-ings ..."); } catch (IOException error) { buffer = null; sliceBuffer = null; xResultBuffer = null; yResultBuffer = null; zResultBuffer = null; errorCleanUp("Algorithm EdgeLapSep exportData: Image(s) locked", true); return; } catch (OutOfMemoryError e) { buffer = null; sliceBuffer = null; xResultBuffer = null; yResultBuffer = null; zResultBuffer = null; errorCleanUp("Algorithm EdgeLapSep: Out of memory", true); return; } // initProgressBar(); fireProgressStateChanged(0, srcImage.getImageName(), "Convolving X dimension ..."); /** Minimum and maximum progress value for the convolving part */ int min = 0; int max = min + Math.round(100 / 2.0f); float stepPerDimension = ((float) (max - min)) / 3.0f; AlgorithmSeparableConvolver xConvolver = null; if (Math.round(stepPerDimension) > 1) { xConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GxxData, kExtents, false); // assume not color xConvolver.setProgressValues(generateProgressValues(min, min + Math.round(stepPerDimension))); linkProgressToAlgorithm(xConvolver); } else { xConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GxxData, kExtents, false); // assume not color } if (!entireImage) { xConvolver.setMask(mask); } xConvolver.run(); xResultBuffer = xConvolver.getOutputBuffer(); xConvolver.finalize(); xConvolver = null; fireProgressStateChanged( min + Math.round(stepPerDimension), srcImage.getImageName(), "Convolving Y dimension..."); AlgorithmSeparableConvolver yConvolver = null; if ((Math.round(stepPerDimension * 2) - Math.round(stepPerDimension)) > 1) { yConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GyyData, kExtents, false); // assume not color yConvolver.setProgressValues( generateProgressValues( min + Math.round(stepPerDimension), min + Math.round(stepPerDimension * 2))); linkProgressToAlgorithm(yConvolver); } else { yConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GyyData, kExtents, false); // assume not color } if (!entireImage) { yConvolver.setMask(mask); } yConvolver.run(); yResultBuffer = yConvolver.getOutputBuffer(); yConvolver.finalize(); yConvolver = null; fireProgressStateChanged( min + Math.round(stepPerDimension * 2), srcImage.getImageName(), "Convolving Z dimension..."); AlgorithmSeparableConvolver zConvolver = null; if ((Math.round(stepPerDimension * 3) - Math.round(stepPerDimension * 2)) > 1) { zConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GzzData, kExtents, false); // assume not color zConvolver.setProgressValues( generateProgressValues(min + Math.round(stepPerDimension * 2), max)); linkProgressToAlgorithm(zConvolver); } else { zConvolver = new AlgorithmSeparableConvolver( buffer, srcImage.getExtents(), GzzData, kExtents, false); // assume not color } if (!entireImage) { zConvolver.setMask(mask); } zConvolver.run(); zResultBuffer = zConvolver.getOutputBuffer(); zConvolver.finalize(); zConvolver = null; min = max; max = 100; float stepPerImage = ((float) (max - min)) / nImages; for (int s = 0; (s < nImages) && !threadStopped; s++) { fireProgressStateChanged( min + Math.round(stepPerImage * s), srcImage.getImageName(), "Calculating the edges of slice " + (s + 1) + "..."); start = s * length; for (int i = start; (i < (start + length)) && !threadStopped; i++) { if (entireImage || mask.get(i)) { destImage.set(i, -(xResultBuffer[i] + yResultBuffer[i] + zResultBuffer[i])); } else { destImage.set(i, buffer[i]); } } try { destImage.exportDataNoLock(start, length, sliceBuffer); } catch (IOException error) { buffer = null; sliceBuffer = null; errorCleanUp("Algorithm EdgeLapSep exportData: " + error, true); return; } genZeroXMask(s, sliceBuffer, detectionType); } if (threadStopped) { finalize(); return; } zXMask.calcMinMax(); destImage.calcMinMax(); destImage.releaseLock(); setCompleted(true); }
/** * This function produces the EdgeLap of input image. * * @param nImages number of images on which to find zero crossings. If 2D image then nImage = 1. * If 3D image where each image is to processed independently then nImages equals the number * of images in the volume. * @param detectionType the type of zero crossing detection to perform */ private void calcStoreInDest2D(int nImages, int detectionType) { // int i, s, idx; int length; int start; float[] buffer, xResultBuffer, yResultBuffer; try { destImage.setLock(); } catch (IOException error) { errorCleanUp("Algorithm EdgeLapSep: Image(s) locked", false); return; } try { length = srcImage.getSliceSize(); buffer = new float[length]; // fireProgressStateChanged(srcImage.getImageName(), "Calculating the Edge ..."); } catch (OutOfMemoryError e) { buffer = null; errorCleanUp("Algorithm Edge Lap Sep: Out of memory", true); return; } fireProgressStateChanged(0, srcImage.getImageName(), "Calculating the Edge ..."); float stepPerImage = 100f / nImages; // initProgressBar(); for (int s = 0; (s < nImages) && !threadStopped; s++) { fireProgressStateChanged( Math.round(stepPerImage * s), srcImage.getImageName(), "Calculating the edges of slice " + (s + 1) + "..."); start = s * length; try { srcImage.exportData(start, length, buffer); // locks and releases lock } catch (IOException error) { errorCleanUp("Algorithm EdgeLapSep: Image(s) locked", false); return; } int min = Math.round(stepPerImage * s); int max = min + Math.round(((float) (Math.round(stepPerImage * (s + 1)) - min)) / 2.0f); AlgorithmSeparableConvolver xConvolver = null; if ((max - min) > 1) { xConvolver = new AlgorithmSeparableConvolver( buffer, new int[] {srcImage.getExtents()[0], srcImage.getExtents()[1]}, GxxData, kExtents, false); xConvolver.setProgressValues(generateProgressValues(min, max)); linkProgressToAlgorithm(xConvolver); } else { xConvolver = new AlgorithmSeparableConvolver( buffer, new int[] {srcImage.getExtents()[0], srcImage.getExtents()[1]}, GxxData, kExtents, false); // assume not color } if (!entireImage) { xConvolver.setMask(mask); } xConvolver.run(); xResultBuffer = xConvolver.getOutputBuffer(); xConvolver.finalize(); xConvolver = null; min = max; max = Math.round(stepPerImage * (s + 1)); AlgorithmSeparableConvolver yConvolver = null; if ((max - min) > 1) { yConvolver = new AlgorithmSeparableConvolver( buffer, new int[] {srcImage.getExtents()[0], srcImage.getExtents()[1]}, GyyData, kExtents, false); yConvolver.setProgressValues(generateProgressValues(min, max)); linkProgressToAlgorithm(yConvolver); } else { yConvolver = new AlgorithmSeparableConvolver( buffer, new int[] {srcImage.getExtents()[0], srcImage.getExtents()[1]}, GyyData, kExtents, false); // assume not color } if (!entireImage) { yConvolver.setMask(mask); } yConvolver.run(); yResultBuffer = yConvolver.getOutputBuffer(); yConvolver.finalize(); yConvolver = null; for (int i = 0, idx = start; (i < buffer.length) && !threadStopped; i++, idx++) { if (entireImage || mask.get(i)) { destImage.set(idx, -(xResultBuffer[i] + yResultBuffer[i])); } else { destImage.set(idx, buffer[i]); } } try { destImage.exportDataNoLock(start, length, buffer); } catch (IOException error) { errorCleanUp("Algorithm EdgeLapSep exportData: " + error, false); return; } genZeroXMask(s, buffer, detectionType); } if (threadStopped) { finalize(); return; } zXMask.calcMinMax(); destImage.calcMinMax(); destImage.releaseLock(); setCompleted(true); }
/** * Generates a zero crossing mask for a 2D function. Sets a ModelImage to 255 if a zero crossing * is detected. * * @param slice the slice of the volume which we are working on (0 if from 2D image) * @param buffer array in which to find zero crossing * @param detectionType the type of zero crossing detection to perform */ public void genZeroXMask(int slice, float[] buffer, int detectionType) { float x0, x1, x2, x3; int i0, i1, i2, i3; int i, j; int indexY; int length; int xDim = srcImage.getExtents()[0]; int yDim = srcImage.getExtents()[1]; length = xDim * yDim; int xxDim = xDim - 1; int yyDim = yDim - 1; float level = 0; int offset = slice * length; for (j = 0; j < yyDim; j++) { indexY = j * xDim; for (i = 0; i < xxDim; i++) { i0 = indexY + i; if (detectionType == MARCHING_SQUARES) { i1 = i0 + 1; i2 = i0 + xDim; i3 = i0 + 1 + xDim; x0 = buffer[i0]; x1 = buffer[i1]; x2 = buffer[i2]; x3 = buffer[i3]; if ((x0 >= level) && (x1 >= level) && (x2 >= level) && (x3 >= level)) { // case 0 - no edge } else if ((x0 >= level) && (x1 >= level) && (x2 < level) && (x3 >= level)) { // case 1 - edge in the lower left zXMask.set(offset + i2, 255); } else if ((x0 >= level) && (x1 >= level) && (x2 >= level) && (x3 < level)) { // case 2 - edge in the lower right zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 >= level) && (x2 < level) && (x3 < level)) { // case 3 - edge horizontally zXMask.set(offset + i2, 255); zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 < level) && (x2 >= level) && (x3 >= level)) { // case 4 - edge in the upper right zXMask.set(offset + i1, 255); } else if ((x0 >= level) && (x1 < level) && (x2 < level) && (x3 >= level)) { // case 5 - ambiguous case; either edge in upper right and lower left or // edge that goes from the upper right to the lower left zXMask.set(offset + i1, 255); zXMask.set(offset + i2, 255); } else if ((x0 >= level) && (x1 < level) && (x2 >= level) && (x3 < level)) { // case 6 - edge going vertically along the right zXMask.set(offset + i1, 255); zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 < level) && (x2 < level) && (x3 < level)) { // case 7 - edge in the upper left zXMask.set(offset + i0, 255); } else if ((x0 < level) && (x1 >= level) && (x2 >= level) && (x3 >= level)) { // case 8 - edge in the upper left zXMask.set(offset + i0, 255); } else if ((x0 < level) && (x1 >= level) && (x2 < level) && (x3 >= level)) { // case 9 - edge going vertically along the left zXMask.set(offset + i0, 255); zXMask.set(offset + i2, 255); } else if ((x0 < level) && (x1 >= level) && (x2 >= level) && (x3 < level)) { // case 10 - ambiguous case; either edge in upper left and lower right or // edge that goes from the upper left to the lower right zXMask.set(offset + i0, 255); zXMask.set(offset + i3, 255); } else if ((x0 < level) && (x1 >= level) && (x2 < level) && (x3 < level)) { // case 11 - edge in the upper right zXMask.set(offset + i1, 255); } else if ((x0 < level) && (x1 < level) && (x2 >= level) && (x3 >= level)) { // case 12 - edge going horizontally along the top zXMask.set(offset + i0, 255); zXMask.set(offset + i1, 255); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 >= level)) { // case 13 - edge in the lower right zXMask.set(offset + i3, 255); } else if ((x0 < level) && (x1 < level) && (x2 >= level) && (x3 < level)) { // case 14 - edge in the lower left zXMask.set(offset + i2, 255); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 < level)) { // case 15 - no edge } } else if (detectionType == NEGATIVE_EDGES) { if (buffer[i0] <= 1) { zXMask.set(offset + i0, 255); } } else if (detectionType == OLD_DETECTION) { i1 = i0 + 1; i2 = i0 + xDim; i3 = i0 + 1 + xDim; x0 = buffer[i0]; x1 = buffer[i1]; x2 = buffer[i2]; x3 = buffer[i3]; if ((x0 > level) && (x1 > level) && (x2 > level) && (x3 > level)) { zXMask.set(offset + i0, 0); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 < level)) { zXMask.set(offset + i0, 0); } else { zXMask.set(offset + i0, 255); } } } } FileInfoBase[] fileInfo = zXMask.getFileInfo(); fileInfo[slice].setModality(srcImage.getFileInfo()[slice].getModality()); fileInfo[slice].setFileDirectory(srcImage.getFileInfo()[slice].getFileDirectory()); fileInfo[slice].setEndianess(srcImage.getFileInfo()[slice].getEndianess()); fileInfo[slice].setUnitsOfMeasure(srcImage.getFileInfo()[slice].getUnitsOfMeasure()); fileInfo[slice].setResolutions(srcImage.getFileInfo()[slice].getResolutions()); fileInfo[slice].setExtents(zXMask.getExtents()); fileInfo[slice].setMax(255); fileInfo[slice].setMin(0); fileInfo[slice].setPixelPadValue(srcImage.getFileInfo()[slice].getPixelPadValue()); fileInfo[slice].setPhotometric(srcImage.getFileInfo()[slice].getPhotometric()); }
/** * Use the GUI results to set up the variables needed to run the algorithm. * * @return <code>true</code> if parameters set successfully, <code>false</code> otherwise. */ private boolean setVariables() { String tmpStr; tmpStr = textXDim.getText(); try { subXDim = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New XDIM string is not a valid integer"); textXDim.requestFocus(); textXDim.selectAll(); return false; } if (subXDim < 3) { MipavUtil.displayError("New XDIM must be at least 3"); textXDim.requestFocus(); textXDim.selectAll(); return false; } else if (subXDim > image.getExtents()[0]) { MipavUtil.displayError("New XDIM cannot exceed " + image.getExtents()[0]); textXDim.requestFocus(); textXDim.selectAll(); return false; } tmpStr = textYDim.getText(); try { subYDim = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New YDIM string is not a valid integer"); textYDim.requestFocus(); textYDim.selectAll(); return false; } if (subYDim < 3) { MipavUtil.displayError("New YDIM must be at least 3"); textYDim.requestFocus(); textYDim.selectAll(); return false; } else if (subYDim > image.getExtents()[1]) { MipavUtil.displayError("New YDIM cannot exceed " + image.getExtents()[1]); textYDim.requestFocus(); textYDim.selectAll(); return false; } tmpStr = textNumberImages.getText(); try { numberOfImagesInMosaic = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New numberOfImagesInMosaic string is not a valid integer"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } if (numberOfImagesInMosaic < 1) { MipavUtil.displayError("New numberOfImagesInMosaic must be at least 1"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } else if (numberOfImagesInMosaic > (subXDim * subYDim)) { MipavUtil.displayError("New numberOfImagesInMosaic cannot exceed (newXDim) * (newYDim)"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } displayLoc = NEW; return true; }
/** Sets up the GUI (panels, buttons, etc) and displays it on the screen. */ private void init() { if (image.getFileInfo(0).getFileFormat() == FileUtility.DICOM) { FileInfoDicom dicomInfo = (FileInfoDicom) image.getFileInfo(0); FileDicomTagTable tagTable = dicomInfo.getTagTable(); if (tagTable.getValue("0018,1310") != null) { // Acquisition matrix FileDicomTag tag = tagTable.get(new FileDicomKey("0018,1310")); Object[] values = tag.getValueList(); int valNumber = values.length; if ((valNumber == 4) && (values instanceof Short[])) { int frequencyRows = ((Short) values[0]).intValue(); Preferences.debug("frequencyRows = " + frequencyRows + "\n"); int frequencyColumns = ((Short) values[1]).intValue(); Preferences.debug("frequencyColumns = " + frequencyColumns + "\n"); int phaseRows = ((Short) values[2]).intValue(); Preferences.debug("phaseRows = " + phaseRows + "\n"); int phaseColumns = ((Short) values[3]).intValue(); Preferences.debug("phaseColumns = " + phaseColumns + "\n"); if ((frequencyRows > 0) && (phaseRows == 0)) { subYDim = frequencyRows; } else if ((frequencyRows == 0) && (phaseRows > 0)) { subYDim = phaseRows; } if ((frequencyColumns > 0) && (phaseColumns == 0)) { subXDim = frequencyColumns; } else if ((frequencyColumns == 0) && (phaseColumns > 0)) { subXDim = phaseColumns; } } } // if (tagTable.getValue("0018,1310") != null) if (tagTable.getValue("0019,100A") != null) { FileDicomTag tag = tagTable.get(new FileDicomKey("0019,100A")); Object value = tag.getValue(false); if (value instanceof Short) { numberOfImagesInMosaic = ((Short) value).intValue(); Preferences.debug("Number of images in mosaic = " + numberOfImagesInMosaic + "\n"); } } // if (tagTable.getValue("0019,100A") != null) } // if (image.getFileInfo(0).getFileFormat() == FileUtility.DICOM)*/ setForeground(Color.black); setTitle("Mosaic To 3D Volume"); JPanel inputPanel = new JPanel(new GridBagLayout()); inputPanel.setForeground(Color.black); inputPanel.setBorder(buildTitledBorder("Image")); JLabel labelUse = new JLabel("Image:"); labelUse.setForeground(Color.black); labelUse.setFont(serif12); JLabel labelImage = new JLabel(image.getImageName()); labelImage.setForeground(Color.black); labelImage.setFont(serif12); GridBagConstraints gbc = new GridBagConstraints(); gbc.gridx = 0; gbc.gridy = 0; gbc.gridheight = 1; gbc.gridwidth = 1; gbc.anchor = GridBagConstraints.WEST; gbc.weightx = 1; gbc.insets = new Insets(5, 5, 5, 5); inputPanel.add(labelUse, gbc); gbc.gridx = 1; gbc.fill = GridBagConstraints.HORIZONTAL; inputPanel.add(labelImage, gbc); JPanel dimensionPanel = new JPanel(new GridBagLayout()); dimensionPanel.setForeground(Color.black); dimensionPanel.setBorder(buildTitledBorder("X and Y Dimensions of Result")); JLabel labelXDim = new JLabel("X dimension of slices"); labelXDim.setForeground(Color.black); labelXDim.setFont(serif12); textXDim = new JTextField(10); if (subXDim != 0) { textXDim.setText(String.valueOf(subXDim)); } textXDim.setFont(serif12); textXDim.setForeground(Color.black); JLabel labelYDim = new JLabel("Y dimension of slices"); labelYDim.setForeground(Color.black); labelYDim.setFont(serif12); textYDim = new JTextField(10); if (subYDim != 0) { textYDim.setText(String.valueOf(subYDim)); } textYDim.setFont(serif12); textYDim.setForeground(Color.black); JLabel labelNumberImages = new JLabel("Number of images in mosaic"); labelNumberImages.setForeground(Color.black); labelNumberImages.setFont(serif12); textNumberImages = new JTextField(10); if (numberOfImagesInMosaic != 0) { textNumberImages.setText(String.valueOf(numberOfImagesInMosaic)); } textNumberImages.setFont(serif12); textNumberImages.setForeground(Color.black); gbc.gridx = 0; gbc.gridy = 0; dimensionPanel.add(labelXDim, gbc); gbc.gridx = 1; dimensionPanel.add(textXDim, gbc); gbc.gridx = 0; gbc.gridy = 1; dimensionPanel.add(labelYDim, gbc); gbc.gridx = 1; dimensionPanel.add(textYDim, gbc); gbc.gridx = 0; gbc.gridy = 2; dimensionPanel.add(labelNumberImages, gbc); gbc.gridx = 1; dimensionPanel.add(textNumberImages, gbc); JPanel mainPanel = new JPanel(new BorderLayout()); mainPanel.add(inputPanel, BorderLayout.NORTH); mainPanel.add(dimensionPanel, BorderLayout.CENTER); mainPanel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5)); JPanel buttonPanel = new JPanel(); buttonPanel.add(buildButtons()); getContentPane().add(mainPanel); getContentPane().add(buttonPanel, BorderLayout.SOUTH); pack(); setVisible(true); }
/** * Once all the necessary variables are set, call the Concat algorithm based on what type of image * this is and whether or not there is a separate destination image. */ protected void callAlgorithm() { int destExtents[] = new int[3]; ModelImage destImage = null; destExtents[0] = subXDim; destExtents[1] = subYDim; destExtents[2] = numberOfImagesInMosaic; destImage = new ModelImage( image.getType(), destExtents, makeImageName(image.getImageName(), "_mosaic_to_slices")); try { // Make algorithm mathAlgo = new AlgorithmMosaicToSlices(image, destImage); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface mathAlgo.addListener(this); createProgressBar(image.getImageName(), mathAlgo); // Hide dialog setVisible(false); if (displayLoc == REPLACE) { // These next lines set the titles in all frames where the source image is displayed to // "locked - " image name so as to indicate that the image is now read/write locked! // The image frames are disabled and then unregisted from the userinterface until the // algorithm has completed. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); titles = new String[imageFrames.size()]; for (int i = 0; i < imageFrames.size(); i++) { titles[i] = ((Frame) (imageFrames.elementAt(i))).getTitle(); ((Frame) (imageFrames.elementAt(i))).setTitle("Locked: " + titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(false); userInterface.unregisterFrame((Frame) (imageFrames.elementAt(i))); } } if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast. if (mathAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { mathAlgo.run(); } } catch (OutOfMemoryError x) { System.gc(); MipavUtil.displayError("Dialog Concatenation: unable to allocate enough memory"); return; } }
/** * This method is required if the AlgorithmPerformed interface is implemented. It is called by the * algorithms when it has completed or failed to to complete, so that the dialog can be display * the result image and/or clean up. * * @param algorithm Algorithm that caused the event. */ public void algorithmPerformed(AlgorithmBase algorithm) { ViewJFrameImage imageFrame = null; if (algorithm instanceof AlgorithmMosaicToSlices) { if ((mathAlgo.isCompleted() == true) && (mathAlgo.getResultImage() != null)) { // The algorithm has completed and produced a new image to be displayed. if (displayLoc == NEW) { try { resultImage = mathAlgo.getResultImage(); new ViewJFrameImage(resultImage, null, new Dimension(610, 200)); } catch (OutOfMemoryError error) { System.gc(); MipavUtil.displayError("Out of memory: unable to open new frame"); } } else { // These next lines set the titles in all frames where the source image is displayed to // image name so as to indicate that the image is now unlocked! // The image frames are enabled and then registed to the userinterface. resultImage = mathAlgo.getResultImage(); Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); for (int i = 0; i < imageFrames.size(); i++) { ((Frame) (imageFrames.elementAt(i))).setTitle(titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(true); if ((((Frame) (imageFrames.elementAt(i))) != parentFrame) && (parentFrame != null)) { userInterface.registerFrame((Frame) (imageFrames.elementAt(i))); } } Point pt; if (parentFrame != null) { pt = ((ViewJFrameBase) parentFrame).getLocation(); } else { pt = new Point( Toolkit.getDefaultToolkit().getScreenSize().width / 2, Toolkit.getDefaultToolkit().getScreenSize().height / 2); } imageFrame = new ViewJFrameImage(resultImage, null, new Dimension(pt.x, pt.y)); if (parentFrame != null) { ((ViewJFrameBase) parentFrame).close(); } else { ((ViewJFrameBase) image.getParentFrame()).close(); } // Not so sure about this. if (image.getLightBoxFrame() != null) { try { pt = image.getLightBoxFrame().getLocation(); image.getLightBoxFrame().close(); new ViewJFrameLightBox( imageFrame, "LightBox", resultImage, imageFrame.getComponentImage().getLUTa(), imageFrame.getComponentImage().getImageB(), imageFrame.getComponentImage().getLUTb(), imageFrame.getComponentImage().getResolutionX(), imageFrame.getComponentImage().getResolutionY(), new Dimension(pt.x, pt.y), imageFrame.getControls(), imageFrame.getVOIManager()); } catch (OutOfMemoryError error) { MipavUtil.displayError("Out of memory: unable to open new frame"); } } } } else if (resultImage == null) { // These next lines set the titles in all frames where the source image is displayed to // image name so as to indicate that the image is now unlocked! // The image frames are enabled and then registered to the userinterface. /*Vector imageFrames = imageA.getImageFrameVector(); for (int i = 0; i < imageFrames.size(); i++) { ((Frame) (imageFrames.elementAt(i))).setTitle(titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(true); if (((Frame) (imageFrames.elementAt(i))) != parentFrame) { userInterface.registerFrame((Frame) (imageFrames.elementAt(i))); } }*/ if (parentFrame != null) { userInterface.registerFrame(parentFrame); } image.notifyImageDisplayListeners(null, true); } else if (resultImage != null) { // algorithm failed but result image still has garbage resultImage.disposeLocal(); // clean up memory System.gc(); } } if (algorithm.isCompleted()) { insertScriptLine(); } mathAlgo.finalize(); mathAlgo = null; dispose(); }