///////////////////////////////////////////////////////////////////////////// // set the sepSet of x and y to the minimal such subset of the given sepSet // and remove the edge <x, y> if background knowledge allows ///////////////////////////////////////////////////////////////////////////// private void setMinSepSet(List<Node> sepSet, Node x, Node y) { // It is assumed that BK has been considered before calling this method // (for example, setting independent1 and independent2 in ruleR0_RFCI) /* // background knowledge requires this edge if (knowledge.noEdgeRequired(x.getNode(), y.getNode())) { return; } */ List<Node> empty = Collections.emptyList(); boolean indep; try { indep = independenceTest.isIndependent(x, y, empty); } catch (Exception e) { indep = false; } if (indep) { getSepsets().set(x, y, empty); return; } int sepSetSize = sepSet.size(); for (int i = 1; i <= sepSetSize; i++) { ChoiceGenerator cg = new ChoiceGenerator(sepSetSize, i); int[] combination; while ((combination = cg.next()) != null) { List<Node> condSet = GraphUtils.asList(combination, sepSet); try { indep = independenceTest.isIndependent(x, y, condSet); } catch (Exception e) { indep = false; } if (indep) { getSepsets().set(x, y, condSet); return; } } } }
private boolean localMarkovIndep(Node x, Node y, Graph pattern, IndependenceTest test) { List<Node> future = pattern.getDescendants(Collections.singletonList(x)); List<Node> boundary = pattern.getAdjacentNodes(x); boundary.removeAll(future); List<Node> closure = new ArrayList<>(boundary); closure.add(x); closure.remove(y); if (future.contains(y) || boundary.contains(y)) return false; return test.isIndependent(x, y, boundary); }
//////////////////////////////////////////// // RFCI Algorithm 4.4 (Colombo et al, 2012) // Orient colliders //////////////////////////////////////////// private void ruleR0_RFCI(List<Node[]> rTuples) { List<Node[]> lTuples = new ArrayList<Node[]>(); List<Node> nodes = graph.getNodes(); /////////////////////////////// // process tuples in rTuples while (!rTuples.isEmpty()) { Node[] thisTuple = rTuples.remove(0); Node i = thisTuple[0]; Node j = thisTuple[1]; Node k = thisTuple[2]; final List<Node> nodes1 = getSepset(i, k); if (nodes1 == null) continue; List<Node> sepSet = new ArrayList<Node>(nodes1); sepSet.remove(j); boolean independent1 = false; if (knowledge.noEdgeRequired(i.getName(), j.getName())) // if BK allows { try { independent1 = independenceTest.isIndependent(i, j, sepSet); } catch (Exception e) { independent1 = true; } } boolean independent2 = false; if (knowledge.noEdgeRequired(j.getName(), k.getName())) // if BK allows { try { independent2 = independenceTest.isIndependent(j, k, sepSet); } catch (Exception e) { independent2 = true; } } if (!independent1 && !independent2) { lTuples.add(thisTuple); } else { // set sepSets to minimal separating sets if (independent1) { setMinSepSet(sepSet, i, j); graph.removeEdge(i, j); } if (independent2) { setMinSepSet(sepSet, j, k); graph.removeEdge(j, k); } // add new unshielded tuples to rTuples for (Node thisNode : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(thisNode); if (independent1) // <i, ., j> { if (adjacentNodes.contains(i) && adjacentNodes.contains(j)) { Node[] newTuple = {i, thisNode, j}; rTuples.add(newTuple); } } if (independent2) // <j, ., k> { if (adjacentNodes.contains(j) && adjacentNodes.contains(k)) { Node[] newTuple = {j, thisNode, k}; rTuples.add(newTuple); } } } // remove tuples involving either (if independent1) <i, j> // or (if independent2) <j, k> from rTuples Iterator<Node[]> iter = rTuples.iterator(); while (iter.hasNext()) { Node[] curTuple = iter.next(); if ((independent1 && (curTuple[1] == i) && ((curTuple[0] == j) || (curTuple[2] == j))) || (independent2 && (curTuple[1] == k) && ((curTuple[0] == j) || (curTuple[2] == j))) || (independent1 && (curTuple[1] == j) && ((curTuple[0] == i) || (curTuple[2] == i))) || (independent2 && (curTuple[1] == j) && ((curTuple[0] == k) || (curTuple[2] == k)))) { iter.remove(); } } // remove tuples involving either (if independent1) <i, j> // or (if independent2) <j, k> from lTuples iter = lTuples.iterator(); while (iter.hasNext()) { Node[] curTuple = iter.next(); if ((independent1 && (curTuple[1] == i) && ((curTuple[0] == j) || (curTuple[2] == j))) || (independent2 && (curTuple[1] == k) && ((curTuple[0] == j) || (curTuple[2] == j))) || (independent1 && (curTuple[1] == j) && ((curTuple[0] == i) || (curTuple[2] == i))) || (independent2 && (curTuple[1] == j) && ((curTuple[0] == k) || (curTuple[2] == k)))) { iter.remove(); } } } } /////////////////////////////////////////////////////// // orient colliders (similar to original FCI ruleR0) for (Node[] thisTuple : lTuples) { Node i = thisTuple[0]; Node j = thisTuple[1]; Node k = thisTuple[2]; List<Node> sepset = getSepset(i, k); if (sepset == null) { continue; } if (!sepset.contains(j) && graph.isAdjacentTo(i, j) && graph.isAdjacentTo(j, k)) { if (!isArrowpointAllowed(i, j)) { continue; } if (!isArrowpointAllowed(k, j)) { continue; } graph.setEndpoint(i, j, Endpoint.ARROW); graph.setEndpoint(k, j, Endpoint.ARROW); printWrongColliderMessage(i, j, k, "R0_RFCI"); } } }