/** * Constructor. Creates a new instance of Spea2Fitness for a given <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code> */ public Spea2Fitness(SolutionSet solutionSet) { distance = distance_.distanceMatrix(solutionSet); solutionSet_ = solutionSet; for (int i = 0; i < solutionSet_.size(); i++) { solutionSet_.get(i).setLocation(i); } // for } // Spea2Fitness
/** * Adds a new distance functor for the given attribute data type. * * @param type the attribute data type * @param d the distance functor to use on the data type */ public static final void putDistanceFunctorFor(String type, Distance d) { Map<String, Distance> fs = distanceMap.get(type); if (fs == null) { fs = new HashMap<String, Distance>(); } fs.put(d.toString(), d); distanceMap.put(type, fs); }
/** * Gets 'size' elements from a population of more than 'size' elements using for this de * enviromentalSelection truncation * * @param size The number of elements to get. */ public SolutionSet environmentalSelection(int size) { if (solutionSet_.size() < size) { size = solutionSet_.size(); } // Create a new auxiliar population for no alter the original population SolutionSet aux = new SolutionSet(solutionSet_.size()); int i = 0; while (i < solutionSet_.size()) { if (solutionSet_.get(i).getFitness() < 1.0) { aux.add(solutionSet_.get(i)); solutionSet_.remove(i); } else { i++; } // if } // while if (aux.size() < size) { Comparator comparator = new FitnessComparator(); solutionSet_.sort(comparator); int remain = size - aux.size(); for (i = 0; i < remain; i++) { aux.add(solutionSet_.get(i)); } return aux; } else if (aux.size() == size) { return aux; } double[][] distance = distance_.distanceMatrix(aux); List<List<DistanceNode>> distanceList = new LinkedList<List<DistanceNode>>(); for (int pos = 0; pos < aux.size(); pos++) { aux.get(pos).setLocation(pos); List<DistanceNode> distanceNodeList = new ArrayList<DistanceNode>(); for (int ref = 0; ref < aux.size(); ref++) { if (pos != ref) { distanceNodeList.add(new DistanceNode(distance[pos][ref], ref)); } // if } // for distanceList.add(distanceNodeList); } // for for (int q = 0; q < distanceList.size(); q++) { Collections.sort(distanceList.get(q), distanceNodeComparator); } // for while (aux.size() > size) { double minDistance = Double.MAX_VALUE; int toRemove = 0; i = 0; Iterator<List<DistanceNode>> iterator = distanceList.iterator(); while (iterator.hasNext()) { List<DistanceNode> dn = iterator.next(); if (dn.get(0).getDistance() < minDistance) { toRemove = i; minDistance = dn.get(0).getDistance(); // i y toRemove have the same distance to the first solution } else if (dn.get(0).getDistance() == minDistance) { int k = 0; while ((dn.get(k).getDistance() == distanceList.get(toRemove).get(k).getDistance()) && k < (distanceList.get(i).size() - 1)) { k++; } if (dn.get(k).getDistance() < distanceList.get(toRemove).get(k).getDistance()) { toRemove = i; } // if } // if i++; } // while int tmp = aux.get(toRemove).getLocation(); aux.remove(toRemove); distanceList.remove(toRemove); Iterator<List<DistanceNode>> externIterator = distanceList.iterator(); while (externIterator.hasNext()) { Iterator<DistanceNode> interIterator = externIterator.next().iterator(); while (interIterator.hasNext()) { if (interIterator.next().getReference() == tmp) { interIterator.remove(); continue; } // if } // while } // while } // while return aux; } // environmentalSelection
public boolean isSimilar(String name1, String name2) { return distance.LD(name1, name2) <= maximumDistance; }