示例#1
0
  public java.awt.geom.GeneralPath appendPath(java.awt.geom.GeneralPath path) {
    double cot = cos(theta);
    double sit = sin(theta);
    double cost, sint;

    if (direct) {
      // Counter-clockwise circle
      for (double t = .1; t < PI * 2; t += .1) {
        cost = cos(t);
        sint = sin(t);
        path.lineTo(
            (float) (xc + r * cost * cot - r * sint * sit),
            (float) (yc + r * cost * sit + r * sint * cot));
      }
    } else {
      // Clockwise circle
      for (double t = .1; t < PI * 2; t += .1) {
        cost = cos(t);
        sint = sin(t);
        path.lineTo(
            (float) (xc + r * cost * cot + r * sint * sit),
            (float) (yc + r * cost * sit - r * sint * cot));
      }
    }

    // line to first point
    path.lineTo((float) (xc + r * cot), (float) (yc + r * sit));

    return path;
  }
示例#2
0
  public java.awt.geom.GeneralPath getGeneralPath() {
    // create new path
    java.awt.geom.GeneralPath path = new java.awt.geom.GeneralPath();

    // move to the first point
    Point2D point = this.firstPoint();
    path.moveTo((float) point.x(), (float) point.y());

    // append the curve
    path = this.appendPath(path);

    // return the final path
    return path;
  }
示例#3
0
  public java.awt.geom.GeneralPath appendPath(java.awt.geom.GeneralPath path) {
    // number of curves to approximate the arc
    int nSeg = (int) ceil(abs(angleExtent) / (PI / 2));
    nSeg = min(nSeg, 4);

    // angular extent of each curve
    double ext = angleExtent / nSeg;

    // compute coefficient
    double k = btan(abs(ext));

    for (int i = 0; i < nSeg; i++) {
      // position of the two extremities
      double ti0 = abs(i * ext);
      double ti1 = abs((i + 1) * ext);

      // extremity points
      Point2D p1 = this.point(ti0);
      Point2D p2 = this.point(ti1);

      // tangent vectors, multiplied by appropriate coefficient
      Vector2D v1 = this.tangent(ti0).times(k);
      Vector2D v2 = this.tangent(ti1).times(k);

      // append a cubic curve to the path
      path.curveTo(
          p1.x() + v1.x(), p1.y() + v1.y(), p2.x() - v2.x(), p2.y() - v2.y(), p2.x(), p2.y());
    }
    return path;
  }