示例#1
0
 // Option 5
 public void shortestByHops(String c1, String c2) {
   System.out.println("FEWEST HOPS from " + c1 + " to " + c2);
   System.out.println("---------------------------------------------");
   City city1 = null;
   City city2 = null;
   for (int i = 0; i < numCities; i++) {
     if (cities[i].name().equals(c1)) {
       city1 = cities[i];
     }
     if (cities[i].name().equals(c2)) {
       city2 = cities[i];
     }
   }
   if (c1.equals(c2) || city1 == null || city2 == null) {
     System.out.println("Invalid city choice(s)");
     return;
   }
   marked = new boolean[numCities];
   distTo = new int[numCities];
   edgeTo = new Route[numCities];
   for (int i = 0; i < numCities; i++) distTo[i] = Integer.MAX_VALUE;
   bfs(city1.id() - 1);
   if (distTo[city2.id() - 1] == Integer.MAX_VALUE) {
     System.out.println("No path");
     return;
   }
   System.out.printf("Fewest hops from %s to %s is %d\n", c1, c2, distTo[city2.id() - 1]);
   City currCity = city2;
   for (Route r = edgeTo[city2.id() - 1]; r != null; r = edgeTo[currCity.id() - 1]) {
     System.out.print(currCity + " ");
     currCity = r.other(currCity);
   }
   System.out.println(currCity);
 }
示例#2
0
 // Option 10
 public void removeCity(String c) {
   City city = null;
   for (int i = 0; i < numCities; i++) {
     if (cities[i].name().equals(c)) {
       city = cities[i];
     }
   }
   if (city == null) {
     System.out.println("Invalid city choice");
     return;
   }
   // Remove all routes connected to the city
   for (Route r : adj[city.id() - 1]) {
     City other = r.other(city);
     adj[other.id() - 1].remove(r);
     routes.remove(r);
     numRoutes--;
   }
   cities[city.id() - 1] = null;
   adj[city.id() - 1] = null;
   numCities--;
   // Shift and resize arrays as necessary
   shiftCities(city.id() - 1);
   shiftAdj(city.id() - 1);
   if (numCities < cities.length / 2) { // halve the lengths of the arrays
     resizeCities(cities.length / 2);
     resizeAdj(cities.length / 2);
   }
 }
示例#3
0
 // relax edge e and update pq if changed
 private void relaxC(Route r, int v) {
   City city2 = r.other(cities[v]);
   int w = city2.id() - 1;
   if (costTo[w] > costTo[v] + r.price()) {
     costTo[w] = costTo[v] + r.price();
     edgeTo[w] = r;
     if (costPQ.contains(w)) costPQ.change(w, costTo[w]);
     else costPQ.insert(w, costTo[w]);
   }
 }
示例#4
0
 private void relaxD(Route r, int v) {
   // relax edge e and update pq if changed
   City city2 = r.other(cities[v]);
   int w = city2.id() - 1;
   if (distTo[w] > distTo[v] + r.distance()) {
     distTo[w] = distTo[v] + r.distance();
     edgeTo[w] = r;
     if (pq.contains(w)) pq.change(w, distTo[w]);
     else pq.insert(w, distTo[w]);
   }
 }
示例#5
0
 // Option 1
 public void showAllRoutes() {
   System.out.println("SHOWING ALL DIRECT ROUTES");
   System.out.println(
       "Note that routes are duplicated," + " once from each end city's point of view");
   System.out.println(
       "--------------------------------" + "-----------------------------------------");
   Object[] objArr = routes.toArray();
   for (int i = 0; i < numRoutes; i++) {
     Route route = (Route) objArr[i];
     System.out.println(route.toStringWN());
   }
 }
示例#6
0
 public void removeRoute(City city1, City city2) {
   Route route = null;
   for (Route r : adj[city1.id() - 1]) {
     if (r.other(city1).equals(city2)) {
       route = r;
       break;
     }
   }
   adj[city1.id() - 1].remove(route);
   adj[city2.id() - 1].remove(route);
   routes.remove(route);
   numRoutes--;
 }
示例#7
0
 private void prim(int s, StringBuilder sb) {
   distTo[s] = 0;
   pq.insert(s, distTo[s]);
   while (!pq.isEmpty()) {
     int v = pq.delMin();
     if (v != s) {
       Route r = edgeTo[v];
       String str = String.format("%s, %s : %d\n", r.fst(), r.snd(), r.distance());
       sb.append(str);
     }
     scan(v);
   }
 }
示例#8
0
  public static void main(String args[]) throws IOException {

    NetworkVersion nv = new NetworkVersion(2, "");

    System.out.println("Solution#1");
    nv.searchLines();

    System.out.println("Solution#2");
    for (int i = 0; i < nv.getLines().size(); i++) {
      nv.getLines().get(i).searchRoutes();
    }

    System.out.println("Solution#3");
    Route r = new Route(2, 1, 1);
    r.getStopAreas().get(0).searchStopPoints();
  }
示例#9
0
 public void bfs(int s) {
   Queue<Integer> q = new Queue<Integer>();
   distTo[s] = 0;
   marked[s] = true;
   q.enqueue(s);
   while (!q.isEmpty()) {
     int v = q.dequeue();
     for (Route r : adj[v]) {
       int w = r.other(cities[v]).id() - 1; // index of other city on route
       if (!marked[w]) {
         edgeTo[w] = r;
         distTo[w] = distTo[v] + 1;
         marked[w] = true;
         q.enqueue(w);
       }
     }
   }
 }
示例#10
0
 private void scan(int v) {
   marked[v] = true;
   for (Route r : adj[v]) {
     int w = r.other(cities[v]).id() - 1; // index of other city in route
     if (marked[w]) {
       continue; // v-w is obsolete edge
     }
     if (r.distance() < distTo[w]) {
       distTo[w] = r.distance();
       edgeTo[w] = r;
       if (pq.contains(w)) {
         pq.change(w, distTo[w]);
       } else {
         pq.insert(w, distTo[w]);
       }
     }
   }
 }
示例#11
0
 // Option 4
 public void shortestByCost(String c1, String c2) {
   System.out.println("SHORTEST COST PATH from " + c1 + " to " + c2);
   System.out.println("--------------------------------------------------------");
   City city1 = null;
   City city2 = null;
   for (int i = 0; i < numCities; i++) {
     if (cities[i].name().equals(c1)) {
       city1 = cities[i];
     }
     if (cities[i].name().equals(c2)) {
       city2 = cities[i];
     }
   }
   if (c1.equals(c2) || city1 == null || city2 == null) {
     System.out.println("Invalid city choice(s)");
     return;
   }
   costTo = new double[numCities];
   edgeTo = new Route[numCities];
   for (int i = 0; i < numCities; i++) costTo[i] = Double.POSITIVE_INFINITY;
   costTo[city1.id() - 1] = 0;
   // relax vertices in order of distance from s
   costPQ = new IndexMinPQ<Double>(numCities);
   costPQ.insert(city1.id() - 1, costTo[city1.id() - 1]);
   while (!costPQ.isEmpty()) {
     int v = costPQ.delMin();
     for (Route r : adj[v]) relaxC(r, v);
   }
   if (costTo[city2.id() - 1] == Double.POSITIVE_INFINITY) {
     System.out.println("No path");
     return;
   }
   System.out.printf("Shortest cost from %s to %s is %.2f\n", c1, c2, costTo[city2.id() - 1]);
   System.out.println("Path with edges (in reverse order):");
   City currCity = city2;
   for (Route r = edgeTo[city2.id() - 1]; r != null; r = edgeTo[currCity.id() - 1]) {
     System.out.print(currCity + " " + r.price() + " ");
     currCity = r.other(currCity);
   }
   System.out.println(currCity);
 }
示例#12
0
 // Option 3
 public void shortestByDistance(String c1, String c2) {
   System.out.println("SHORTEST DISTANCE PATH from " + c1 + " to " + c2);
   System.out.println("--------------------------------------------------------");
   City city1 = null;
   City city2 = null;
   for (int i = 0; i < numCities; i++) {
     if (cities[i].name().equals(c1)) {
       city1 = cities[i];
     }
     if (cities[i].name().equals(c2)) {
       city2 = cities[i];
     }
   }
   if (c1.equals(c2) || city1 == null || city2 == null) {
     System.out.println("Invalid city choice(s)");
     return;
   }
   distTo = new int[numCities];
   edgeTo = new Route[numCities];
   for (int i = 0; i < numCities; i++) distTo[i] = Integer.MAX_VALUE;
   distTo[city1.id() - 1] = 0;
   // relax vertices in order of distance from s
   pq = new IndexMinPQ<Integer>(numCities);
   pq.insert(city1.id() - 1, distTo[city1.id() - 1]);
   while (!pq.isEmpty()) {
     int v = pq.delMin();
     for (Route r : adj[v]) relaxD(r, v);
   }
   if (distTo[city2.id() - 1] == Integer.MAX_VALUE) {
     System.out.println("No path");
     return;
   }
   System.out.printf("Shortest distance from %s to %s is %d\n", c1, c2, distTo[city2.id() - 1]);
   System.out.println("Path with edges (in reverse order):");
   City currCity = city2;
   for (Route r = edgeTo[city2.id() - 1]; r != null; r = edgeTo[currCity.id() - 1]) {
     System.out.print(currCity + " " + r.distance() + " ");
     currCity = r.other(currCity);
   }
   System.out.println(currCity);
 }
示例#13
0
 private void recPaths(double maxCost, double currCost, City currCity) {
   // Backtrack if above max cost
   if (currCost > maxCost) {
     marked[currCity.id() - 1] = false;
     return;
   }
   // Print current path before continuing along routes
   if (edgeTo[currCity.id() - 1] != null) {
     System.out.printf("Cost: %.0f Path (reversed): ", currCost);
     City temp = currCity;
     for (Route r = edgeTo[temp.id() - 1]; r != null; r = edgeTo[temp.id() - 1]) {
       System.out.printf("%s %.0f ", temp, r.price());
       temp = r.other(temp);
     }
     System.out.println(temp);
   }
   // Recursion
   marked[currCity.id() - 1] = true;
   for (Route r : adj[currCity.id() - 1]) {
     City other = r.other(currCity);
     // Don't follow route if other city already in path
     if (!marked[other.id() - 1]) {
       edgeTo[other.id() - 1] = r;
       recPaths(maxCost, currCost + r.price(), other);
     }
   }
   // traversed all paths from currCity, backtrack to previous city
   marked[currCity.id() - 1] = false;
 }
示例#14
0
文件: Pcc.java 项目: topiaf/Graph
  public void run() {

    if (!star) {
      System.out.println(
          "Run PCC de "
              + zoneOrigine
              + ":"
              + origine
              + " vers "
              + zoneDestination
              + ":"
              + destination);
    }
    if (star) {
      System.out.println(
          "Run PCC-Star de "
              + zoneOrigine
              + ":"
              + origine
              + " vers "
              + zoneDestination
              + ":"
              + destination);
    }

    // decision temps ou distance. Si on est en mode covoiturage, ce n'est pas nécessaire car on est
    // forcément en temps
    if (covoit == 0) {
      Scanner sc = new Scanner(System.in);
      System.out.println("En temps(0) ou distance(1)?");
      if (sc.nextInt() == 1) {
        this.setdist(true);
      }
    }
    // chronometrage
    long start_time = System.currentTimeMillis();

    Label l = new Label(false, 0.0, null, this.graphe.sommets.get(origine));
    chem.add(l);
    tas.insert(l);
    maplabel.put(this.graphe.sommets.get(origine), l);

    // affichage de l'origine et de la destination
    this.graphe.getDessin().setColor(Color.BLUE);
    this.graphe
        .getDessin()
        .drawPoint(
            this.graphe.sommets.get(origine).getlon(),
            this.graphe.sommets.get(origine).getlat(),
            10);
    this.graphe
        .getDessin()
        .drawPoint(
            this.graphe.sommets.get(destination).getlon(),
            this.graphe.sommets.get(destination).getlat(),
            10);

    // compteur d'elements explores
    int nb_explor = 0;
    int tas_max = 0;

    while (!(tas.isEmpty())) {
      // extraction du minimum
      Label pere = tas.findMin();
      tas.deleteMin();

      // on arrete le programme une fois la destination trouvee, sauf si l'on ne souhaite pas
      // arreter ---> covoiturage
      if (pere.getCourant().getNum() == destination && (covoit == 0)) {
        System.out.println("Algorithme termine!");
        break;
      }

      pere.setMarquage(true);
      chem.add(pere);

      for (Route route : pere.getCourant().routes) {
        Sommet suiv = route.getArrivee();
        // affichage du parcours en temps reel. On ne le fait pas dans l'optimisation de covoiturage
        // car cela surcharge trop le dessin.
        if (this.getcovoit() == 0) {
          this.graphe.getDessin().setColor(Color.gray);
          this.graphe
              .getDessin()
              .drawLine(
                  suiv.getlon(),
                  suiv.getlat(),
                  pere.getCourant().getlon(),
                  pere.getCourant().getlat());
        }
        // declarations des variables de cout, cout secondaire et estimation
        double new_cout = 0.0;

        double estim = 0.0; // ESTIMATION VERY IMPORTANT

        double cout_sec = 0.0;

        if (this.dist_temps) // Cout n distance
        {
          double vitesse = ((double) (route.getDesc().vitesseMax()));
          new_cout = pere.getCout() + ((double) (route.getDist()));

          // cout secondaire, ici en temps
          cout_sec = pere.getCoutSec() + (60.0 * ((double) (route.getDist())) / (1000.0 * vitesse));
          if (this.star) {
            estim = suiv.dist_vol_oiseau(this.graphe.sommets.get(destination));
          }
        } else {
          // Cout en temps
          double vitesse = ((double) (route.getDesc().vitesseMax()));
          // cas du pieton
          if (this.getcovoit() == 1 && (vitesse == 130.0 || vitesse == 110.0)) {

            // ici, le pieton ne peut pas acceder a cette route,
            // elle est reservee aux voitures, le cout est donc le plus grand possible
            new_cout = Double.MAX_VALUE;
          } else {
            if (this.getcovoit() == 1) {
              vitesse = 4.0;
            }
            new_cout = pere.getCout() + (60.0 * ((double) (route.getDist())) / (1000.0 * vitesse));

            // cout secondaire, ici en distance
            cout_sec = pere.getCoutSec() + ((double) (route.getDist()));
          }

          // Ici on modifie le calcul de l'estimation dans le cas d'un calcul Astar.  VERY IMPORTANT
          if (this.star) {
            estim =
                suiv.cout_vol_oiseau(this.graphe.sommets.get(destination), this.graphe.getvitmax());
          }
        }

        // on regarde si le sommet a deja un label associe avec un cout different de l'infini)
        // pour ce faire, on verifie juste qu'il est integre a la hashmap ou pas
        if (maplabel.containsKey(suiv)) {
          maplabel.get(suiv).setEstim(estim);

          // maj du label, et de la hashmap
          // on ne verifie pas si le sommet est marque : en effet, s'il l'est, son cout
          // est deja minimal et la condition suivante sera toujours fausse.
          if (maplabel.get(suiv).getCout() > new_cout) {
            maplabel.get(suiv).setCout(new_cout);
            maplabel.get(suiv).setPere(pere.getCourant());
            maplabel.get(suiv).setCoutSec(cout_sec);
            tas.update(maplabel.get(suiv));
          }
        } else {
          // le sommet a un cout infini : on cree un label, et on l'integre a la hashmap
          Label lab = new Label(false, new_cout, pere.getCourant(), suiv);
          lab.setEstim(estim);
          lab.setCoutSec(cout_sec);
          tas.insert(lab);
          maplabel.put(suiv, lab);

          // compteurs de performance
          nb_explor++;
          if (tas.size() > tas_max) {
            tas_max = tas.size();
          }
        }
      }
    }
    // on affiche le chemin
    this.print_chemin(this.graphe.sommets.get(destination));

    // fin du chronometre
    long end_time = System.currentTimeMillis();
    long difference = end_time - start_time;

    // on affiche les performances
    System.out.println("Temps écoulé en millisecondes : " + difference);
    System.out.println("Elements explorés : " + nb_explor);
    System.out.println("Taille max du tas : " + tas_max);
  }