void loadTransformation(String filename, ResultsTable res) { try { String line; FileReader fr = new FileReader(filename); BufferedReader br = new BufferedReader(fr); if (!br.readLine().equals(" Z-Step Raw Width minus Heigh Calibration Width minus Height")) { IJ.error("File does not seam to be an Astigmatism calibration file"); return; } // java.lang.String [] elements = new java.lang.String [3]; java.lang.String[] elements; int counter = 1; res.reset(); while ((line = br.readLine()) != null) { IJ.showStatus("Loading element " + counter + "... sit back and relax."); counter++; line.trim(); elements = line.split("\t"); res.incrementCounter(); res.addValue("Z-Step", Double.parseDouble(elements[1])); res.addValue("Raw Width minus Heigh", Double.parseDouble(elements[2])); res.addValue("Calibration Width minus Height", Double.parseDouble(elements[3])); } fr.close(); } catch (FileNotFoundException e) { IJ.error("File not found exception" + e); return; } catch (IOException e) { IJ.error("IOException exception" + e); return; } catch (NumberFormatException e) { IJ.error("Number format exception" + e); return; } }
/** * Saves statistics for one particle in a results table. This is a method subclasses may want to * override. */ protected void saveResults(ImageStatistics stats, Roi roi) { analyzer.saveResults(stats, roi); if (recordStarts) { rt.addValue("XStart", stats.xstart); rt.addValue("YStart", stats.ystart); } if (addToManager) { if (roiManager == null) { if (Macro.getOptions() != null && Interpreter.isBatchMode()) roiManager = Interpreter.getBatchModeRoiManager(); if (roiManager == null) { Frame frame = WindowManager.getFrame("ROI Manager"); if (frame == null) IJ.run("ROI Manager..."); frame = WindowManager.getFrame("ROI Manager"); if (frame == null || !(frame instanceof RoiManager)) { addToManager = false; return; } roiManager = (RoiManager) frame; } if (resetCounter) roiManager.runCommand("reset"); } if (imp.getStackSize() > 1) roi.setPosition(imp.getCurrentSlice()); if (lineWidth != 1) roi.setStrokeWidth(lineWidth); roiManager.add(imp, roi, rt.getCounter()); } if (showResults) rt.addResults(); }
public void run() { line.trim(); elements = line.split("\t"); if (elements.length < 14) return; lock.lock(); res.incrementCounter(); res.addValue("Intensity", Double.parseDouble(elements[1])); res.addValue("X (px)", Double.parseDouble(elements[2])); res.addValue("Y (px)", Double.parseDouble(elements[3])); res.addValue("X (nm)", Double.parseDouble(elements[4])); res.addValue("Y (nm)", Double.parseDouble(elements[5])); res.addValue("Z (nm)", Double.parseDouble(elements[6])); res.addValue("Left-StdDev (px)", Double.parseDouble(elements[7])); res.addValue("Right-StdDev (px)", Double.parseDouble(elements[8])); res.addValue("Up-StdDev (px)", Double.parseDouble(elements[9])); res.addValue("Down-StdDev (px)", Double.parseDouble(elements[10])); res.addValue("X Symmetry (%)", Double.parseDouble(elements[11])); res.addValue("Y Symmetry (%)", Double.parseDouble(elements[12])); res.addValue("Width minus Height (px)", Double.parseDouble(elements[13])); res.addValue("Frame Number", Double.parseDouble(elements[14])); lock.unlock(); }
public void run(ImageProcessor ip) { String[] imageNames = getOpenImageNames(); if (imageNames[0] == "None") { IJ.error("need at least 2 binary open images"); return; } double previousMinOverlap = Prefs.get("BVTB.BinaryFeatureExtractor.minOverlap", 0); boolean previousCombine = Prefs.get("BVTB.BinaryFeatureExtractor.combine", false); GenericDialog gd = new GenericDialog("Binary Feature Extractor"); gd.addChoice("Objects image", imageNames, imageNames[0]); gd.addChoice("Selector image", imageNames, imageNames[1]); gd.addNumericField("Object_overlap in % (0=off)", previousMinOverlap, 0, 9, ""); gd.addCheckbox("Combine objects and selectors", previousCombine); gd.addCheckbox("Count output", true); gd.addCheckbox("Analysis tables", false); gd.showDialog(); if (gd.wasCanceled()) { return; } String objectsImgTitle = gd.getNextChoice(); String selectorsImgTitle = gd.getNextChoice(); double minOverlap = gd.getNextNumber(); boolean combineImages = gd.getNextBoolean(); boolean showCountOutput = gd.getNextBoolean(); boolean showAnalysis = gd.getNextBoolean(); if (gd.invalidNumber() || minOverlap < 0 || minOverlap > 100) { IJ.error("invalid number"); return; } Prefs.set("BVTB.BinaryFeatureExtractor.minOverlap", minOverlap); Prefs.set("BVTB.BinaryFeatureExtractor.combine", combineImages); if (objectsImgTitle.equals(selectorsImgTitle)) { IJ.error("images need to be different"); return; } ImagePlus objectsImp = WindowManager.getImage(objectsImgTitle); ImageProcessor objectsIP = objectsImp.getProcessor(); ImagePlus selectorsImp = WindowManager.getImage(selectorsImgTitle); ImageProcessor selectorsIP = selectorsImp.getProcessor(); if (!objectsIP.isBinary() || !selectorsIP.isBinary()) { IJ.error("works with 8-bit binary images only"); return; } if ((objectsImp.getWidth() != selectorsImp.getWidth()) || objectsImp.getHeight() != selectorsImp.getHeight()) { IJ.error("images need to be of the same size"); return; } // close any existing RoiManager before instantiating a new one for this analysis RoiManager oldRM = RoiManager.getInstance2(); if (oldRM != null) { oldRM.close(); } RoiManager objectsRM = new RoiManager(true); ResultsTable objectsRT = new ResultsTable(); ParticleAnalyzer analyzeObjects = new ParticleAnalyzer(analyzerOptions, measurementFlags, objectsRT, 0.0, 999999999.9); analyzeObjects.setRoiManager(objectsRM); analyzeObjects.analyze(objectsImp); objectsRM.runCommand("Show None"); int objectNumber = objectsRT.getCounter(); Roi[] objectRoi = objectsRM.getRoisAsArray(); ResultsTable measureSelectorsRT = new ResultsTable(); Analyzer overlapAnalyzer = new Analyzer(selectorsImp, measurementFlags, measureSelectorsRT); ImagePlus outputImp = IJ.createImage("output", "8-bit black", objectsImp.getWidth(), objectsImp.getHeight(), 1); ImageProcessor outputIP = outputImp.getProcessor(); double[] measuredOverlap = new double[objectNumber]; outputIP.setValue(255.0); for (int o = 0; o < objectNumber; o++) { selectorsImp.killRoi(); selectorsImp.setRoi(objectRoi[o]); overlapAnalyzer.measure(); measuredOverlap[o] = measureSelectorsRT.getValue("%Area", o); if (minOverlap != 0.0 && measuredOverlap[o] >= minOverlap) { outputIP.fill(objectRoi[o]); finalCount++; } else if (minOverlap == 0.0 && measuredOverlap[o] > 0.0) { outputIP.fill(objectRoi[o]); finalCount++; } } // measureSelectorsRT.show("Objects"); selectorsImp.killRoi(); RoiManager selectorRM = new RoiManager(true); ResultsTable selectorRT = new ResultsTable(); ParticleAnalyzer.setRoiManager(selectorRM); ParticleAnalyzer analyzeSelectors = new ParticleAnalyzer(analyzerOptions, measurementFlags, selectorRT, 0.0, 999999999.9); analyzeSelectors.analyze(selectorsImp); selectorRM.runCommand("Show None"); int selectorNumber = selectorRT.getCounter(); if (combineImages) { outputImp.updateAndDraw(); Roi[] selectorRoi = selectorRM.getRoisAsArray(); ResultsTable measureObjectsRT = new ResultsTable(); Analyzer selectorAnalyzer = new Analyzer(outputImp, measurementFlags, measureObjectsRT); double[] selectorOverlap = new double[selectorNumber]; outputIP.setValue(255.0); for (int s = 0; s < selectorNumber; s++) { outputImp.killRoi(); outputImp.setRoi(selectorRoi[s]); selectorAnalyzer.measure(); selectorOverlap[s] = measureObjectsRT.getValue("%Area", s); if (selectorOverlap[s] > 0.0d) { outputIP.fill(selectorRoi[s]); } } selectorRoi = null; selectorAnalyzer = null; measureObjectsRT = null; } // selectorRT.show("Selectors"); outputImp.killRoi(); String outputImageTitle = WindowManager.getUniqueName("Extracted_" + objectsImgTitle); outputImp.setTitle(outputImageTitle); outputImp.show(); outputImp.changes = true; if (showCountOutput) { String[] openTextWindows = WindowManager.getNonImageTitles(); boolean makeNewTable = true; for (int w = 0; w < openTextWindows.length; w++) { if (openTextWindows[w].equals("BFE_Results")) { makeNewTable = false; } } TextWindow existingCountTable = ResultsTable.getResultsWindow(); if (makeNewTable) { countTable = new ResultsTable(); countTable.setPrecision(0); countTable.setValue("Image", 0, outputImageTitle); countTable.setValue("Objects", 0, objectNumber); countTable.setValue("Selectors", 0, selectorNumber); countTable.setValue("Extracted", 0, finalCount); countTable.show("BFE_Results"); } else { IJ.renameResults("BFE_Results", "Results"); countTable = ResultsTable.getResultsTable(); countTable.setPrecision(0); countTable.incrementCounter(); countTable.addValue("Image", outputImageTitle); countTable.addValue("Objects", objectNumber); countTable.addValue("Selectors", selectorNumber); countTable.addValue("Extracted", finalCount); IJ.renameResults("Results", "BFE_Results"); countTable.show("BFE_Results"); } } if (showAnalysis) { ResultsTable extractedRT = new ResultsTable(); ParticleAnalyzer analyzeExtracted = new ParticleAnalyzer( ParticleAnalyzer.CLEAR_WORKSHEET | ParticleAnalyzer.RECORD_STARTS, measurementFlags, extractedRT, 0.0, 999999999.9); analyzeExtracted.analyze(outputImp); objectsRT.show("Objects"); selectorRT.show("Selectors"); extractedRT.show("Extracted"); } else { objectsRT = null; selectorRT = null; } objectsRM = null; measureSelectorsRT = null; analyzeObjects = null; overlapAnalyzer = null; objectRoi = null; selectorRM = null; objectsImp.killRoi(); objectsImp.changes = false; selectorsImp.changes = false; }
public int setup(String arg, ImagePlus imp) { // IJ.register(Average_Oversampled.class); if (IJ.versionLessThan("1.32c")) return DONE; if (this.pre) { // before finding means imp.unlock(); this.imp = imp; this.nslices = imp.getNSlices(); this.width = imp.getWidth(); this.height = imp.getHeight(); this.slicecols = new float[nslices][width]; this.pre = false; return (DOES_ALL + DOES_STACKS + FINAL_PROCESSING); } else { // find SD after finding means of columns float sum; // sum of pixel values column float avg; // average pixel value of a column double devsum; // sum of deviations double devavg; // standard deviation double[] columns = new double[width]; // x-axis of plot double[] sdevs = new double[width]; // y-axis of plot for (int i = 0; i < width; i += 1) { sum = 0; // reset with each column avg = 0; // reset with each column devsum = 0; // reset with each column devavg = 0; // reset with each column columns[i] = i; // building x-axis for (int s = 0; s < nslices; s += 1) { // sum of column means sum = sum + slicecols[s][i]; } avg = sum / nslices; // mean of one column across all slices for (int s = 0; s < nslices; s += 1) { // standard deviation devsum = devsum + Math.pow((slicecols[s][i] - avg), 2); // square diff } devavg = Math.sqrt(devsum / nslices); sdevs[i] = devavg; // building y-axis } Plot plot = new Plot("Average SD by Column", "Columns", "Standard Deviation", columns, sdevs); plot.show(); // calculate CTN double ctn; double sdevssum = 0; for (double sd : sdevs) { sdevssum = sdevssum + sd; } ctn = sdevssum / width; // display CTN on results table ResultsTable rt = ResultsTable.getResultsTable(); // rt.incrementCounter(); rt.addValue("Column Temporal Noise", ctn); rt.show("Results"); this.pre = false; return DONE; } }