/** * Compute relative variable importance for GBM model. * * <p>See (45), (35) formulas in Friedman: Greedy Function Approximation: A Gradient boosting * machine. Algo used here can be used for computation individual importance of features per * output class. */ @Override protected VarImp doVarImpCalc( GBMModel model, DTree[] ktrees, int tid, Frame validationFrame, boolean scale) { assert model.ntrees() - 1 == tid : "varimp computation expect model with already serialized trees: tid=" + tid; // Iterates over k-tree for (DTree t : ktrees) { // Iterate over trees if (t != null) { for (int n = 0; n < t.len() - t.leaves; n++) if (t.node(n) instanceof DecidedNode) { // it is split node Split split = t.decided(n)._split; _improvPerVar[split._col] += split.improvement(); // least squares improvement } } } // Compute variable importance for all trees in model float[] varimp = new float[model.nfeatures()]; int ntreesTotal = model.ntrees() * model.nclasses(); int maxVar = 0; for (int var = 0; var < _improvPerVar.length; var++) { varimp[var] = _improvPerVar[var] / ntreesTotal; if (varimp[var] > varimp[maxVar]) maxVar = var; } // GBM scale varimp to scale 0..100 if (scale) { float maxVal = varimp[maxVar]; for (int var = 0; var < varimp.length; var++) varimp[var] /= maxVal; } return new VarImp(varimp); }
// -------------------------------------------------------------------------- // Build the next k-trees, which is trying to correct the residual error from // the prior trees. From LSE2, page 387. Step 2b ii, iii. private DTree[] buildNextKTrees(Frame fr) { // We're going to build K (nclass) trees - each focused on correcting // errors for a single class. final DTree[] ktrees = new DTree[_nclass]; // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1 /*just root leaf*/][_ncols]; for (int k = 0; k < _nclass; k++) { // Initially setup as-if an empty-split had just happened if (_distribution == null || _distribution[k] != 0) { // The Boolean Optimization // This optimization assumes the 2nd tree of a 2-class system is the // inverse of the first. This is false for DRF (and true for GBM) - // DRF picks a random different set of columns for the 2nd tree. if (k == 1 && _nclass == 2) continue; ktrees[k] = new DTree(fr._names, _ncols, (char) nbins, (char) _nclass, min_rows); new GBMUndecidedNode( ktrees[k], -1, DHistogram.initialHist(fr, _ncols, nbins, hcs[k][0], false)); // The "root" node } } int[] leafs = new int[_nclass]; // Define a "working set" of leaf splits, from here to tree._len // ---- // ESL2, page 387. Step 2b ii. // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. int depth = 0; for (; depth < max_depth; depth++) { if (!Job.isRunning(self())) return null; hcs = buildLayer(fr, ktrees, leafs, hcs, false, false); // If we did not make any new splits, then the tree is split-to-death if (hcs == null) break; } // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. for (int k = 0; k < _nclass; k++) { DTree tree = ktrees[k]; if (tree == null) continue; int leaf = leafs[k] = tree.len(); for (int nid = 0; nid < leaf; nid++) { if (tree.node(nid) instanceof DecidedNode) { DecidedNode dn = tree.decided(nid); for (int i = 0; i < dn._nids.length; i++) { int cnid = dn._nids[i]; if (cnid == -1 || // Bottomed out (predictors or responses known constant) tree.node(cnid) instanceof UndecidedNode || // Or chopped off for depth (tree.node(cnid) instanceof DecidedNode && // Or not possible to split ((DecidedNode) tree.node(cnid))._split.col() == -1)) dn._nids[i] = new GBMLeafNode(tree, nid).nid(); // Mark a leaf here } // Handle the trivial non-splitting tree if (nid == 0 && dn._split.col() == -1) new GBMLeafNode(tree, -1, 0); } } } // -- k-trees are done // ---- // ESL2, page 387. Step 2b iii. Compute the gammas, and store them back // into the tree leaves. Includes learn_rate. // gamma_i_k = (nclass-1)/nclass * (sum res_i / sum (|res_i|*(1-|res_i|))) // For regression: // gamma_i_k = sum res_i / count(res_i) GammaPass gp = new GammaPass(ktrees, leafs).doAll(fr); double m1class = _nclass > 1 ? (double) (_nclass - 1) / _nclass : 1.0; // K-1/K for (int k = 0; k < _nclass; k++) { final DTree tree = ktrees[k]; if (tree == null) continue; for (int i = 0; i < tree._len - leafs[k]; i++) { double g = gp._gss[k][i] == 0 // Constant response? ? (gp._rss[k][i] == 0 ? 0 : 1000) // Cap (exponential) learn, instead of dealing with Inf : learn_rate * m1class * gp._rss[k][i] / gp._gss[k][i]; assert !Double.isNaN(g); ((LeafNode) tree.node(leafs[k] + i))._pred = g; } } // ---- // ESL2, page 387. Step 2b iv. Cache the sum of all the trees, plus the // new tree, in the 'tree' columns. Also, zap the NIDs for next pass. // Tree <== f(Tree) // Nids <== 0 new MRTask2() { @Override public void map(Chunk chks[]) { // For all tree/klasses for (int k = 0; k < _nclass; k++) { final DTree tree = ktrees[k]; if (tree == null) continue; final Chunk nids = chk_nids(chks, k); final Chunk ct = chk_tree(chks, k); for (int row = 0; row < nids._len; row++) { int nid = (int) nids.at80(row); if (nid < 0) continue; ct.set0(row, (float) (ct.at0(row) + ((LeafNode) tree.node(nid))._pred)); nids.set0(row, 0); } } } }.doAll(fr); // Collect leaves stats for (int i = 0; i < ktrees.length; i++) if (ktrees[i] != null) ktrees[i].leaves = ktrees[i].len() - leafs[i]; // DEBUG: Print the generated K trees // printGenerateTrees(ktrees); return ktrees; }