/** * Tun ester2 diarization. * * @param parameter the parameter * @param clusterSet the cluster set * @return the tree map * @throws DiarizationException the diarization exception * @throws Exception the exception */ public TreeMap<String, DiarizationResultList> tunEster2Diarization( Parameter parameter, ClusterSet clusterSet) throws DiarizationException, Exception { TreeMap<String, DiarizationResultList> result = new TreeMap<String, DiarizationResultList>(); // double paramThr = parameter.getParameterClustering().getThreshold(); lMin = parameter.getParameterDiarization().getThreshold("l"); lMax = parameter.getParameterDiarization().getMaxThreshold("l"); hMin = parameter.getParameterDiarization().getThreshold("h"); hMax = parameter.getParameterDiarization().getMaxThreshold("h"); dMin = parameter.getParameterDiarization().getThreshold("d"); dMax = parameter.getParameterDiarization().getMaxThreshold("d"); cMin = parameter.getParameterDiarization().getThreshold("c"); cMax = parameter.getParameterDiarization().getMaxThreshold("c"); String featureDesc = parameter.getParameterInputFeature().getFeaturesDescriptorAsString(); AudioFeatureSet featureSet = null; ClusterSet clustersSegInit = null; if (parameter.getParameterDiarization().isLoadInputSegmentation() == false) { featureSet = loadFeature(parameter, clusterSet, featureDesc); featureSet.setCurrentShow(parameter.show); int nbFeatures = featureSet.getNumberOfFeatures(); clusterSet.getFirstCluster().firstSegment().setLength(nbFeatures); clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); } else { featureSet = loadFeature(parameter, clusterSet, featureDesc); featureSet.setCurrentShow(parameter.show); clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); featureSet = loadFeature(parameter, clustersSegInit, featureDesc); featureSet.setCurrentShow(parameter.show); } // seg IRIT // ClusterSet clustersSegSave = clustersSegInit; // seg IRIT ClusterSet referenceClusterSet = MainTools.readTheSecondClusterSet(parameter); ClusterSet uemClusterSet = MainTools.readThe3rdClusterSet(parameter); if (parameter.getParameterDiarization().isLastStepOnly()) { String key = "l=" + lMin + " h=" + hMin + " d=" + dMin; DiarizationResultList values = null; if (parameter.getParameterDiarization().isCEClustering() == false) { logger.warning(" nothing to do isCEClustering == false"); } else { values = tunEster2SpeakerCLRClustering( referenceClusterSet, uemClusterSet, key, "ce", clusterSet, clusterSet, featureSet, parameter); } result.put(key, values); return result; } ClusterSet clustersSegSave = segmentation("GLR", "FULL", clustersSegInit, featureSet, parameter); for (double l = lMin; l <= lMax; l += 0.5) { ClusterSet clustersSeg = clustersSegSave.clone(); logger.finest("clustering l=" + l); ClusterSet clustersLClust = clusteringLinear(l, clustersSeg, featureSet, parameter); // ---- Begin NEW v 1.14 --- for (double h = hMin; h <= hMax; h += 0.5) { // for (double h = hMin; h <= hMax; h += 0.2) { // ---- end NEW v 1.14 --- // if (h > l) { ClusterSet clustersHClust = clustering(h, clustersLClust, featureSet, parameter); for (double d = dMin; d <= dMax; d += 50) { ClusterSet clustersDClust = decode(8, d, clustersHClust, featureSet, parameter); // double error = DiarizationError.scoreOfMatchedSpeakers(referenceClusterSet, // clustersDClust); ClusterSet clustersSplitClust = speech( "10,10,50", clusterSet, clustersSegInit, clustersDClust, featureSet, parameter); ClusterSet clustersGender = gender(clusterSet, clustersSplitClust, featureSet, parameter); String key = "l=" + l + " h=" + h + " d=" + d; DiarizationResultList values = null; if (parameter.getParameterDiarization().isCEClustering() == false) { values = new DiarizationResultList(0, 0, 1); DiarizationError computeError = new DiarizationError(referenceClusterSet, uemClusterSet); DiarizationResult error = computeError.scoreOfMatchedSpeakers(clustersGender); values.setResult(0, 0, error); logger.finer(parameter.show + " key=" + key + " resultat du fichier"); values.log("partial result: " + parameter.show + " " + key); } else { // V4.19 = CLUST_H_BIC_GMM_MAP // values = tunEster2SpeakerCLRClustering(referenceClusterSet, key, "bicgmmmap", // clustersGender, clustersGender, featureSet, parameter); // V5.16 = ce_d // values = tunEster2SpeakerCLRClustering(referenceClusterSet, key, "ce_d", // clustersGender, clustersGender, featureSet, parameter); values = tunEster2SpeakerCLRClustering( referenceClusterSet, uemClusterSet, key, "ce", clustersGender, clustersGender, featureSet, parameter); } if (result.containsKey(key)) { result.get(key).addResultArray(values); } else { result.put(key, values); } } // } } } return result; }
/** * Ester2 version. * * @param parameter the parameter * @throws DiarizationException the diarization exception * @throws Exception the exception */ public void ester2Version(Parameter parameter) throws DiarizationException, Exception { // ** Caution this system is developed using Sphinx MFCC computed with legacy mode ClusterSet referenceClusterSet = null; if (!parameter.getParameterSegmentationInputFile2().getMask().equals("")) { referenceClusterSet = MainTools.readTheSecondClusterSet(parameter); } ClusterSet uemClusterSet = null; if (!parameter.getParameterSegmentationInputFile3().getMask().equals("")) { referenceClusterSet = MainTools.readThe3rdClusterSet(parameter); } ParameterBNDiarization parameterDiarization = parameter.getParameterDiarization(); // ** mask for the output of the segmentation file ClusterSet clusterSet = initialize(parameter); // ** load the features, sphinx format (13 MFCC with C0) or compute it form a wave file AudioFeatureSet featureSet = loadFeature( parameter, clusterSet, parameter.getParameterInputFeature().getFeaturesDescriptorAsString()); featureSet.setCurrentShow(parameter.show); int nbFeatures = featureSet.getNumberOfFeatures(); if (parameter.getParameterDiarization().isLoadInputSegmentation() == false) { clusterSet.getFirstCluster().firstSegment().setLength(nbFeatures); } // clusterSet.debug(3); ClusterSet clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); ClusterSet clustersSeg = segmentation("GLR", "FULL", clustersSegInit, featureSet, parameter); // Seg IRIT // ClusterSet clustersSegInit = clusterSet; // ClusterSet clustersSeg = clusterSet; // Seg IRIT ClusterSet clustersLClust = clusteringLinear( parameterDiarization.getThreshold("l"), clustersSeg, featureSet, parameter); ClusterSet clustersHClust = clustering(parameterDiarization.getThreshold("h"), clustersLClust, featureSet, parameter); // MainTools.writeClusterSet(parameter, clustersHClust, false); ClusterSet clustersDClust = decode(8, parameterDiarization.getThreshold("d"), clustersHClust, featureSet, parameter); ClusterSet clustersSplitClust = speech("10,10,50", clusterSet, clustersSegInit, clustersDClust, featureSet, parameter); ClusterSet clustersGender = gender(clusterSet, clustersSplitClust, featureSet, parameter); if (parameter.getParameterDiarization().isCEClustering()) { ClusterSet clustersCLR = speakerClustering( parameterDiarization.getThreshold("c"), "ce", clustersSegInit, clustersGender, featureSet, parameter); MainTools.writeClusterSet(parameter, clustersCLR, false); if (referenceClusterSet != null) { DiarizationError computeError = new DiarizationError(referenceClusterSet, uemClusterSet); computeError.scoreOfMatchedSpeakers(clustersCLR); } } else { MainTools.writeClusterSet(parameter, clustersGender, false); } }