示例#1
0
 /** This method is simply for debugging. */
 protected void show() {
   if (this.m_Plot == null) {
     //			InterfaceDataTypeDouble indy = (InterfaceDataTypeDouble)this.population.get(0);
     //			double[][] range = indy.getDoubleRange();
     //			double[] tmpD = new double[2];
     //			tmpD[0] = 0;
     //			tmpD[1] = 0;
     this.m_Plot =
         new eva2.gui.Plot("TRIBES " + population.getGeneration(), "x1", "x2", range[0], range[1]);
     //			this.m_Plot.setCornerPoints(range, 0);
   }
 }
示例#2
0
 /**
  * Return a SolutionSet of TribesExplorers (AbstractEAIndividuals) of which some where memory
  * particles, thus the returned population is larger than the current population.
  *
  * @return a population of possible solutions.
  */
 public InterfaceSolutionSet getAllSolutions() {
   // return population and memories?
   Population all = (Population) population.clone();
   List<TribesPosition> mems = swarm.collectMem();
   for (Iterator<TribesPosition> iterator = mems.iterator(); iterator.hasNext(); ) {
     TribesPosition tp = iterator.next();
     all.add(positionToExplorer(tp));
   }
   all.SetFunctionCalls(population.getFunctionCalls());
   all.setGenerationTo(population.getGeneration());
   // all.addPopulation(pop);
   return new SolutionSet(population, all);
 }
  /**
   * Perform the main adaption of sigma and C using evolution paths. The evolution path is deduced
   * from the center of the selected population compared to the old mean value. See Hansen&Kern 04
   * for further information.
   *
   * @param oldGen
   * @param selectedP
   */
  public void adaptAfterSelection(Population oldGen, Population selectedP) {
    Population selectedSorted =
        selectedP.getSortedBestFirst(new AbstractEAIndividualComparator(-1));

    int mu, lambda;
    mu = selectedP.size();
    lambda = oldGen.size();
    int generation = oldGen.getGeneration();
    if (mu >= lambda) {
      // try to override by oldGen additional data:
      if (oldGen.hasData(EvolutionStrategies.esMuParam))
        mu = (Integer) oldGen.getData(EvolutionStrategies.esMuParam);
      if (oldGen.hasData(EvolutionStrategies.esLambdaParam))
        lambda = (Integer) oldGen.getData(EvolutionStrategies.esLambdaParam);
    }
    if (mu >= lambda) {
      mu = Math.max(1, lambda / 2);
      EVAERROR.errorMsgOnce(
          "Warning: invalid mu/lambda ratio! Setting mu to lambda/2 = "
              + mu
              + ", lambda = "
              + lambda);
    }
    CMAParamSet params;
    if (oldGen.getGeneration()
        <= 1) { // init new param set. At gen < 1 we shouldnt be called, but better do it once too
                // often
      if (oldGen.hasData(cmaParamsKey))
        params =
            CMAParamSet.initCMAParams(
                (CMAParamSet) oldGen.getData(cmaParamsKey),
                mu,
                lambda,
                oldGen,
                getInitSigma(oldGen));
      else params = CMAParamSet.initCMAParams(mu, lambda, oldGen, getInitSigma(oldGen));
    } else {
      if (!oldGen.hasData(cmaParamsKey)) {
        if (oldGen.getGeneration() > 1)
          EVAERROR.errorMsgOnce("Error: population lost cma parameters. Incompatible optimizer?");
        params = CMAParamSet.initCMAParams(mu, lambda, oldGen, getInitSigma(oldGen));
      } else params = (CMAParamSet) oldGen.getData(cmaParamsKey);
    }

    if (lambda == 1
        && (oldGen.size() == 1)
        && (selectedP.size() == 1)
        && (oldGen.getEAIndividual(0).equals(selectedP.getEAIndividual(0)))) {
      // nothing really happened, so do not adapt and just store default params
      lastParams = (CMAParamSet) params.clone();
      oldGen.putData(cmaParamsKey, params);
      selectedP.putData(cmaParamsKey, params);
      return;
    }

    if (TRACE_1) {
      System.out.println("WCMA adaptGenerational **********");
      //			System.out.println("newPop measures: " +
      // BeanInspector.toString(newPop.getPopulationMeasures()));
      System.out.println("mu_eff: " + CMAParamSet.getMuEff(params.weights, mu));
      System.out.println(params.toString());
      System.out.println("*********************************");
    }

    double[] newMeanX = calcMeanX(params.weights, selectedSorted);
    if (TRACE_1) System.out.println("newMeanX:  " + BeanInspector.toString(newMeanX));

    int dim = params.meanX.length;
    double[] BDz = new double[dim];
    for (int i = 0; i < dim; i++) {
        /* calculate xmean and BDz~N(0,C) */
      // Eq. 4 from HK04, most right term
      BDz[i] =
          Math.sqrt(CMAParamSet.getMuEff(params.weights, mu))
              * (newMeanX[i] - params.meanX[i])
              / getSigma(params, i);
    }
    //        if (TRACE_2) System.out.println("BDz is " + BeanInspector.toString(BDz));

    double[] newPathS = params.pathS.clone();
    double[] newPathC = params.pathC.clone();

    double[] zVect = new double[dim];
    /* calculate z := D^(-1) * B^(-1) * BDz into artmp, we could have stored z instead */
    for (int i = 0; i < dim; ++i) {
      double sum = 0.;
      for (int j = 0; j < dim; ++j) {
        sum += params.mB.get(j, i) * BDz[j]; // times B transposed, (Eq 4) in HK04
      }
      if (params.eigenvalues[i] < 0) {
        EVAERROR.errorMsgOnce(
            "Warning: negative eigenvalue in MutateESRankMuCMA! (possibly multiple cases)");
        zVect[i] = 0;
      } else {
        zVect[i] = sum / Math.sqrt(params.eigenvalues[i]);
        if (!checkValidDouble(zVect[i])) {
          System.err.println("Error, infinite zVect entry!");
          zVect[i] = 0; // TODO MK
        }
      }
    }

    /* cumulation for sigma (ps) using B*z */
    for (int i = 0; i < dim; ++i) {
      double sum = 0.;
      for (int j = 0; j < dim; ++j) sum += params.mB.get(i, j) * zVect[j];
      newPathS[i] =
          (1. - params.c_sig) * params.pathS[i]
              + Math.sqrt(params.c_sig * (2. - params.c_sig)) * sum;
      if (!checkValidDouble(newPathS[i])) {
        System.err.println("Error, infinite pathS!");
      }
    }
    //		System.out.println("pathS diff: " + BeanInspector.toString(Mathematics.vvSub(newPathS,
    // pathS)));
    //		System.out.println("newPathS is " + BeanInspector.toString(newPathS));

    double psNorm = Mathematics.norm(newPathS);

    double hsig = 0;
    if (psNorm / Math.sqrt(1. - Math.pow(1. - params.c_sig, 2. * generation)) / expRandStepLen
        < 1.4 + 2. / (dim + 1.)) {
      hsig = 1;
    }
    for (int i = 0; i < dim; ++i) {
      newPathC[i] =
          (1. - getCc()) * params.pathC[i] + hsig * Math.sqrt(getCc() * (2. - getCc())) * BDz[i];
      checkValidDouble(newPathC[i]);
    }

    // TODO missing: "remove momentum in ps"

    if (TRACE_1) {
      System.out.println("newPathC: " + BeanInspector.toString(newPathC));
      System.out.println("newPathS: " + BeanInspector.toString(newPathS));
    }

    if (TRACE_1) System.out.println("Bef: C is \n" + params.mC.toString());
    if (params.meanX == null) params.meanX = newMeanX;

    updateCov(params, newPathC, newMeanX, hsig, mu, selectedSorted);
    updateBD(params);

    if (TRACE_2) System.out.println("Aft: C is " + params.mC.toString());

    /* update of sigma */
    double sigFact = Math.exp(((psNorm / expRandStepLen) - 1) * params.c_sig / params.d_sig);
    if (Double.isInfinite(sigFact))
      params.sigma *= 10.; // in larger search spaces sigma tends to explode after init.
    else params.sigma *= sigFact;

    if (!testAndCorrectNumerics(params, generation, selectedSorted)) {
      // parameter seemingly exploded...
      params =
          CMAParamSet.initCMAParams(
              params,
              mu,
              lambda,
              params.meanX,
              ((InterfaceDataTypeDouble) oldGen.getEAIndividual(0)).getDoubleRange(),
              params.firstSigma);
    }

    if (TRACE_1) {
      System.out.println("sigma=" + params.sigma);
      System.out.print("psLen=" + (psNorm) + " ");
      outputParams(params, mu);
    }

    // take over data
    params.meanX = newMeanX;
    params.pathC = newPathC;
    params.pathS = newPathS;
    params.firstAdaptionDone = true;

    lastParams = (CMAParamSet) params.clone();
    oldGen.putData(cmaParamsKey, params);
    selectedP.putData(cmaParamsKey, params);
    //		if (TRACE_2) System.out.println("sampling around " + BeanInspector.toString(meanX));
  }