/** * Provides some testing and opportunities for exploration of the probabilities of a BaseLexicon. * What's here currently probably only works for the English Penn Treeebank, as it uses default * constructors. Of the words given to test on, the first is treated as sentence initial, and the * rest as not sentence initial. * * @param args The command line arguments: java BaseLexicon treebankPath fileRange * unknownWordModel words* */ public static void main(String[] args) { if (args.length < 3) { System.err.println("java BaseLexicon treebankPath fileRange unknownWordModel words*"); return; } System.out.print("Training BaseLexicon from " + args[0] + ' ' + args[1] + " ... "); Treebank tb = new DiskTreebank(); tb.loadPath(args[0], new NumberRangesFileFilter(args[1], true)); // TODO: change this interface so the lexicon creates its own indices? Index<String> wordIndex = new HashIndex<String>(); Index<String> tagIndex = new HashIndex<String>(); BaseLexicon lex = new BaseLexicon(wordIndex, tagIndex); lex.getUnknownWordModel().setUnknownLevel(Integer.parseInt(args[2])); lex.train(tb); System.out.println("done."); System.out.println(); NumberFormat nf = NumberFormat.getNumberInstance(); nf.setMaximumFractionDigits(4); List<String> impos = new ArrayList<String>(); for (int i = 3; i < args.length; i++) { if (lex.isKnown(args[i])) { System.out.println( args[i] + " is a known word. Log probabilities [log P(w|t)] for its taggings are:"); for (Iterator<IntTaggedWord> it = lex.ruleIteratorByWord(wordIndex.indexOf(args[i], true), i - 3, null); it.hasNext(); ) { IntTaggedWord iTW = it.next(); System.out.println( StringUtils.pad(iTW, 24) + nf.format(lex.score(iTW, i - 3, wordIndex.get(iTW.word)))); } } else { String sig = lex.getUnknownWordModel().getSignature(args[i], i - 3); System.out.println( args[i] + " is an unknown word. Signature with uwm " + lex.getUnknownWordModel().getUnknownLevel() + ((i == 3) ? " init" : "non-init") + " is: " + sig); impos.clear(); List<String> lis = new ArrayList<String>(tagIndex.objectsList()); Collections.sort(lis); for (String tStr : lis) { IntTaggedWord iTW = new IntTaggedWord(args[i], tStr, wordIndex, tagIndex); double score = lex.score(iTW, 1, args[i]); if (score == Float.NEGATIVE_INFINITY) { impos.add(tStr); } else { System.out.println(StringUtils.pad(iTW, 24) + nf.format(score)); } } if (impos.size() > 0) { System.out.println(args[i] + " impossible tags: " + impos); } } System.out.println(); } }
/** For testing: loads a treebank and prints the trees. */ public static void main(String[] args) { TreebankLangParserParams tlpp = new ChineseTreebankParserParams(); System.out.println("Default encoding is: " + tlpp.diskTreebank().encoding()); if (args.length < 2) { printlnErr( "Usage: edu.stanford.nlp.parser.lexparser.ChineseTreebankParserParams treesPath fileRange"); } else { Treebank m = tlpp.diskTreebank(); m.loadPath(args[0], new NumberRangesFileFilter(args[1], false)); for (Tree t : m) { t.pennPrint(tlpp.pw()); } System.out.println("There were " + m.size() + " trees."); } }
public static void main(String[] args) { Options op = new Options(new EnglishTreebankParserParams()); // op.tlpParams may be changed to something else later, so don't use it till // after options are parsed. System.out.println(StringUtils.toInvocationString("FactoredParser", args)); String path = "/u/nlp/stuff/corpora/Treebank3/parsed/mrg/wsj"; int trainLow = 200, trainHigh = 2199, testLow = 2200, testHigh = 2219; String serializeFile = null; int i = 0; while (i < args.length && args[i].startsWith("-")) { if (args[i].equalsIgnoreCase("-path") && (i + 1 < args.length)) { path = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-train") && (i + 2 < args.length)) { trainLow = Integer.parseInt(args[i + 1]); trainHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-test") && (i + 2 < args.length)) { testLow = Integer.parseInt(args[i + 1]); testHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-serialize") && (i + 1 < args.length)) { serializeFile = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-tLPP") && (i + 1 < args.length)) { try { op.tlpParams = (TreebankLangParserParams) Class.forName(args[i + 1]).newInstance(); } catch (ClassNotFoundException e) { System.err.println("Class not found: " + args[i + 1]); throw new RuntimeException(e); } catch (InstantiationException e) { System.err.println("Couldn't instantiate: " + args[i + 1] + ": " + e.toString()); throw new RuntimeException(e); } catch (IllegalAccessException e) { System.err.println("illegal access" + e); throw new RuntimeException(e); } i += 2; } else if (args[i].equals("-encoding")) { // sets encoding for TreebankLangParserParams op.tlpParams.setInputEncoding(args[i + 1]); op.tlpParams.setOutputEncoding(args[i + 1]); i += 2; } else { i = op.setOptionOrWarn(args, i); } } // System.out.println(tlpParams.getClass()); TreebankLanguagePack tlp = op.tlpParams.treebankLanguagePack(); op.trainOptions.sisterSplitters = new HashSet<String>(Arrays.asList(op.tlpParams.sisterSplitters())); // BinarizerFactory.TreeAnnotator.setTreebankLang(tlpParams); PrintWriter pw = op.tlpParams.pw(); op.testOptions.display(); op.trainOptions.display(); op.display(); op.tlpParams.display(); // setup tree transforms Treebank trainTreebank = op.tlpParams.memoryTreebank(); MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank(); // Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank(); // String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/"; // blippTreebank.loadPath(blippPath, "", true); Timing.startTime(); System.err.print("Reading trees..."); testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true)); if (op.testOptions.increasingLength) { Collections.sort(testTreebank, new TreeLengthComparator()); } trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true)); Timing.tick("done."); System.err.print("Binarizing trees..."); TreeAnnotatorAndBinarizer binarizer; if (!op.trainOptions.leftToRight) { binarizer = new TreeAnnotatorAndBinarizer( op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op); } else { binarizer = new TreeAnnotatorAndBinarizer( op.tlpParams.headFinder(), new LeftHeadFinder(), op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op); } CollinsPuncTransformer collinsPuncTransformer = null; if (op.trainOptions.collinsPunc) { collinsPuncTransformer = new CollinsPuncTransformer(tlp); } TreeTransformer debinarizer = new Debinarizer(op.forceCNF); List<Tree> binaryTrainTrees = new ArrayList<Tree>(); if (op.trainOptions.selectiveSplit) { op.trainOptions.splitters = ParentAnnotationStats.getSplitCategories( trainTreebank, op.trainOptions.tagSelectiveSplit, 0, op.trainOptions.selectiveSplitCutOff, op.trainOptions.tagSelectiveSplitCutOff, op.tlpParams.treebankLanguagePack()); if (op.trainOptions.deleteSplitters != null) { List<String> deleted = new ArrayList<String>(); for (String del : op.trainOptions.deleteSplitters) { String baseDel = tlp.basicCategory(del); boolean checkBasic = del.equals(baseDel); for (Iterator<String> it = op.trainOptions.splitters.iterator(); it.hasNext(); ) { String elem = it.next(); String baseElem = tlp.basicCategory(elem); boolean delStr = checkBasic && baseElem.equals(baseDel) || elem.equals(del); if (delStr) { it.remove(); deleted.add(elem); } } } System.err.println("Removed from vertical splitters: " + deleted); } } if (op.trainOptions.selectivePostSplit) { TreeTransformer myTransformer = new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams, op); Treebank annotatedTB = trainTreebank.transform(myTransformer); op.trainOptions.postSplitters = ParentAnnotationStats.getSplitCategories( annotatedTB, true, 0, op.trainOptions.selectivePostSplitCutOff, op.trainOptions.tagSelectivePostSplitCutOff, op.tlpParams.treebankLanguagePack()); } if (op.trainOptions.hSelSplit) { binarizer.setDoSelectiveSplit(false); for (Tree tree : trainTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } // tree.pennPrint(tlpParams.pw()); tree = binarizer.transformTree(tree); // binaryTrainTrees.add(tree); } binarizer.setDoSelectiveSplit(true); } for (Tree tree : trainTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTrainTrees.add(tree); } if (op.testOptions.verbose) { binarizer.dumpStats(); } List<Tree> binaryTestTrees = new ArrayList<Tree>(); for (Tree tree : testTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTestTrees.add(tree); } Timing.tick("done."); // binarization BinaryGrammar bg = null; UnaryGrammar ug = null; DependencyGrammar dg = null; // DependencyGrammar dgBLIPP = null; Lexicon lex = null; Index<String> stateIndex = new HashIndex<String>(); // extract grammars Extractor<Pair<UnaryGrammar, BinaryGrammar>> bgExtractor = new BinaryGrammarExtractor(op, stateIndex); // Extractor bgExtractor = new SmoothedBinaryGrammarExtractor();//new BinaryGrammarExtractor(); // Extractor lexExtractor = new LexiconExtractor(); // Extractor dgExtractor = new DependencyMemGrammarExtractor(); if (op.doPCFG) { System.err.print("Extracting PCFG..."); Pair<UnaryGrammar, BinaryGrammar> bgug = null; if (op.trainOptions.cheatPCFG) { List<Tree> allTrees = new ArrayList<Tree>(binaryTrainTrees); allTrees.addAll(binaryTestTrees); bgug = bgExtractor.extract(allTrees); } else { bgug = bgExtractor.extract(binaryTrainTrees); } bg = bgug.second; bg.splitRules(); ug = bgug.first; ug.purgeRules(); Timing.tick("done."); } System.err.print("Extracting Lexicon..."); Index<String> wordIndex = new HashIndex<String>(); Index<String> tagIndex = new HashIndex<String>(); lex = op.tlpParams.lex(op, wordIndex, tagIndex); lex.train(binaryTrainTrees); Timing.tick("done."); if (op.doDep) { System.err.print("Extracting Dependencies..."); binaryTrainTrees.clear(); Extractor<DependencyGrammar> dgExtractor = new MLEDependencyGrammarExtractor(op, wordIndex, tagIndex); // dgBLIPP = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams,true)); // DependencyGrammar dg1 = dgExtractor.extract(trainTreebank.iterator(), new // TransformTreeDependency(op.tlpParams, true)); // dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new // TransformTreeDependency(tlpParams)); // dg = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams)); // dg=new DependencyGrammarCombination(dg1,dgBLIPP,2); dg = dgExtractor.extract( binaryTrainTrees); // uses information whether the words are known or not, discards // unknown words Timing.tick("done."); // System.out.print("Extracting Unknown Word Model..."); // UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees); // Timing.tick("done."); System.out.print("Tuning Dependency Model..."); dg.tune(binaryTestTrees); // System.out.println("TUNE DEPS: "+tuneDeps); Timing.tick("done."); } BinaryGrammar boundBG = bg; UnaryGrammar boundUG = ug; GrammarProjection gp = new NullGrammarProjection(bg, ug); // serialization if (serializeFile != null) { System.err.print("Serializing parser..."); LexicalizedParser.saveParserDataToSerialized( new ParserData(lex, bg, ug, dg, stateIndex, wordIndex, tagIndex, op), serializeFile); Timing.tick("done."); } // test: pcfg-parse and output ExhaustivePCFGParser parser = null; if (op.doPCFG) { parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op, stateIndex, wordIndex, tagIndex); } ExhaustiveDependencyParser dparser = ((op.doDep && !op.testOptions.useFastFactored) ? new ExhaustiveDependencyParser(dg, lex, op, wordIndex, tagIndex) : null); Scorer scorer = (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp, op), dparser) : null); // Scorer scorer = parser; BiLexPCFGParser bparser = null; if (op.doPCFG && op.doDep) { bparser = (op.testOptions.useN5) ? new BiLexPCFGParser.N5BiLexPCFGParser( scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex) : new BiLexPCFGParser( scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex); } Evalb pcfgPE = new Evalb("pcfg PE", true); Evalb comboPE = new Evalb("combo PE", true); AbstractEval pcfgCB = new Evalb.CBEval("pcfg CB", true); AbstractEval pcfgTE = new TaggingEval("pcfg TE"); AbstractEval comboTE = new TaggingEval("combo TE"); AbstractEval pcfgTEnoPunct = new TaggingEval("pcfg nopunct TE"); AbstractEval comboTEnoPunct = new TaggingEval("combo nopunct TE"); AbstractEval depTE = new TaggingEval("depnd TE"); AbstractEval depDE = new UnlabeledAttachmentEval("depnd DE", true, null, tlp.punctuationWordRejectFilter()); AbstractEval comboDE = new UnlabeledAttachmentEval("combo DE", true, null, tlp.punctuationWordRejectFilter()); if (op.testOptions.evalb) { EvalbFormatWriter.initEVALBfiles(op.tlpParams); } // int[] countByLength = new int[op.testOptions.maxLength+1]; // Use a reflection ruse, so one can run this without needing the // tagger. Using a function rather than a MaxentTagger means we // can distribute a version of the parser that doesn't include the // entire tagger. Function<List<? extends HasWord>, ArrayList<TaggedWord>> tagger = null; if (op.testOptions.preTag) { try { Class[] argsClass = {String.class}; Object[] arguments = new Object[] {op.testOptions.taggerSerializedFile}; tagger = (Function<List<? extends HasWord>, ArrayList<TaggedWord>>) Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger") .getConstructor(argsClass) .newInstance(arguments); } catch (Exception e) { System.err.println(e); System.err.println("Warning: No pretagging of sentences will be done."); } } for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) { Tree tree = testTreebank.get(tNum); int testTreeLen = tree.yield().size(); if (testTreeLen > op.testOptions.maxLength) { continue; } Tree binaryTree = binaryTestTrees.get(tNum); // countByLength[testTreeLen]++; System.out.println("-------------------------------------"); System.out.println("Number: " + (tNum + 1)); System.out.println("Length: " + testTreeLen); // tree.pennPrint(pw); // System.out.println("XXXX The binary tree is"); // binaryTree.pennPrint(pw); // System.out.println("Here are the tags in the lexicon:"); // System.out.println(lex.showTags()); // System.out.println("Here's the tagnumberer:"); // System.out.println(Numberer.getGlobalNumberer("tags").toString()); long timeMil1 = System.currentTimeMillis(); Timing.tick("Starting parse."); if (op.doPCFG) { // System.err.println(op.testOptions.forceTags); if (op.testOptions.forceTags) { if (tagger != null) { // System.out.println("Using a tagger to set tags"); // System.out.println("Tagged sentence as: " + // tagger.processSentence(cutLast(wordify(binaryTree.yield()))).toString(false)); parser.parse(addLast(tagger.apply(cutLast(wordify(binaryTree.yield()))))); } else { // System.out.println("Forcing tags to match input."); parser.parse(cleanTags(binaryTree.taggedYield(), tlp)); } } else { // System.out.println("XXXX Parsing " + binaryTree.yield()); parser.parse(binaryTree.yieldHasWord()); } // Timing.tick("Done with pcfg phase."); } if (op.doDep) { dparser.parse(binaryTree.yieldHasWord()); // Timing.tick("Done with dependency phase."); } boolean bothPassed = false; if (op.doPCFG && op.doDep) { bothPassed = bparser.parse(binaryTree.yieldHasWord()); // Timing.tick("Done with combination phase."); } long timeMil2 = System.currentTimeMillis(); long elapsed = timeMil2 - timeMil1; System.err.println("Time: " + ((int) (elapsed / 100)) / 10.00 + " sec."); // System.out.println("PCFG Best Parse:"); Tree tree2b = null; Tree tree2 = null; // System.out.println("Got full best parse..."); if (op.doPCFG) { tree2b = parser.getBestParse(); tree2 = debinarizer.transformTree(tree2b); } // System.out.println("Debinarized parse..."); // tree2.pennPrint(); // System.out.println("DepG Best Parse:"); Tree tree3 = null; Tree tree3db = null; if (op.doDep) { tree3 = dparser.getBestParse(); // was: but wrong Tree tree3db = debinarizer.transformTree(tree2); tree3db = debinarizer.transformTree(tree3); tree3.pennPrint(pw); } // tree.pennPrint(); // ((Tree)binaryTrainTrees.get(tNum)).pennPrint(); // System.out.println("Combo Best Parse:"); Tree tree4 = null; if (op.doPCFG && op.doDep) { try { tree4 = bparser.getBestParse(); if (tree4 == null) { tree4 = tree2b; } } catch (NullPointerException e) { System.err.println("Blocked, using PCFG parse!"); tree4 = tree2b; } } if (op.doPCFG && !bothPassed) { tree4 = tree2b; } // tree4.pennPrint(); if (op.doDep) { depDE.evaluate(tree3, binaryTree, pw); depTE.evaluate(tree3db, tree, pw); } TreeTransformer tc = op.tlpParams.collinizer(); TreeTransformer tcEvalb = op.tlpParams.collinizerEvalb(); if (op.doPCFG) { // System.out.println("XXXX Best PCFG was: "); // tree2.pennPrint(); // System.out.println("XXXX Transformed best PCFG is: "); // tc.transformTree(tree2).pennPrint(); // System.out.println("True Best Parse:"); // tree.pennPrint(); // tc.transformTree(tree).pennPrint(); pcfgPE.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); pcfgCB.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); Tree tree4b = null; if (op.doDep) { comboDE.evaluate((bothPassed ? tree4 : tree3), binaryTree, pw); tree4b = tree4; tree4 = debinarizer.transformTree(tree4); if (op.nodePrune) { NodePruner np = new NodePruner(parser, debinarizer); tree4 = np.prune(tree4); } // tree4.pennPrint(); comboPE.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } // pcfgTE.evaluate(tree2, tree); pcfgTE.evaluate(tcEvalb.transformTree(tree2), tcEvalb.transformTree(tree), pw); pcfgTEnoPunct.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); if (op.doDep) { comboTE.evaluate(tcEvalb.transformTree(tree4), tcEvalb.transformTree(tree), pw); comboTEnoPunct.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } System.out.println("PCFG only: " + parser.scoreBinarizedTree(tree2b, 0)); // tc.transformTree(tree2).pennPrint(); tree2.pennPrint(pw); if (op.doDep) { System.out.println("Combo: " + parser.scoreBinarizedTree(tree4b, 0)); // tc.transformTree(tree4).pennPrint(pw); tree4.pennPrint(pw); } System.out.println("Correct:" + parser.scoreBinarizedTree(binaryTree, 0)); /* if (parser.scoreBinarizedTree(tree2b,true) < parser.scoreBinarizedTree(binaryTree,true)) { System.out.println("SCORE INVERSION"); parser.validateBinarizedTree(binaryTree,0); } */ tree.pennPrint(pw); } // end if doPCFG if (op.testOptions.evalb) { if (op.doPCFG && op.doDep) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree4)); } else if (op.doPCFG) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree2)); } else if (op.doDep) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree3db)); } } } // end for each tree in test treebank if (op.testOptions.evalb) { EvalbFormatWriter.closeEVALBfiles(); } // op.testOptions.display(); if (op.doPCFG) { pcfgPE.display(false, pw); System.out.println("Grammar size: " + stateIndex.size()); pcfgCB.display(false, pw); if (op.doDep) { comboPE.display(false, pw); } pcfgTE.display(false, pw); pcfgTEnoPunct.display(false, pw); if (op.doDep) { comboTE.display(false, pw); comboTEnoPunct.display(false, pw); } } if (op.doDep) { depTE.display(false, pw); depDE.display(false, pw); } if (op.doPCFG && op.doDep) { comboDE.display(false, pw); } // pcfgPE.printGoodBad(); }
/** * Usage: java edu.stanford.nlp.trees.tregex.tsurgeon.Tsurgeon [-s] -treeFile file-with-trees [-po * matching-pattern operation] operation-file-1 operation-file-2 ... operation-file-n * * <h4>Arguments:</h4> * * Each argument should be the name of a transformation file that contains a list of pattern and * transformation operation list pairs. That is, it is a sequence of pairs of a {@link * TregexPattern} pattern on one or more lines, then a blank line (empty or whitespace), then a * list of transformation operations one per line (as specified by <b>Legal operation syntax</b> * below) to apply when the pattern is matched, and then another blank line (empty or whitespace). * Note the need for blank lines: The code crashes if they are not present as separators (although * the blank line at the end of the file can be omitted). The script file can include comment * lines, either whole comment lines or trailing comments introduced by %, which extend to the end * of line. A needed percent mark can be escaped by a preceding backslash. * * <p>For example, if you want to excise an SBARQ node whenever it is the parent of an SQ node, * and relabel the SQ node to S, your transformation file would look like this: * * <blockquote> * * <code> * SBARQ=n1 < SQ=n2<br> * <br> * excise n1 n1<br> * relabel n2 S * </code> * * </blockquote> * * <p> * * <h4>Options:</h4> * * <ul> * <li><code>-treeFile <filename></code> specify the name of the file that has the trees * you want to transform. * <li><code>-po <matchPattern> <operation></code> Apply a single operation to * every tree using the specified match pattern and the specified operation. Use this option * when you want to quickly try the effect of one pattern/surgery combination, and are too * lazy to write a transformation file. * <li><code>-s</code> Print each output tree on one line (default is pretty-printing). * <li><code>-m</code> For every tree that had a matching pattern, print "before" (prepended as * "Operated on:") and "after" (prepended as "Result:"). Unoperated trees just pass through * the transducer as usual. * <li><code>-encoding X</code> Uses character set X for input and output of trees. * <li><code>-macros <filename></code> A file of macros to use on the tregex pattern. * Macros should be one per line, with original and replacement separated by tabs. * <li><code>-hf <headfinder-class-name></code> use the specified {@link HeadFinder} class * to determine headship relations. * <li><code>-hfArg <string></code> pass a string argument in to the {@link HeadFinder} * class's constructor. <code>-hfArg</code> can be used multiple times to pass in multiple * arguments. * <li><code>-trf <TreeReaderFactory-class-name></code> use the specified {@link * TreeReaderFactory} class to read trees from files. * </ul> * * <h4>Legal operation syntax:</h4> * * <ul> * <li><code>delete <name></code> deletes the node and everything below it. * <li><code>prune <name></code> Like delete, but if, after the pruning, the parent has * no children anymore, the parent is pruned too. Pruning continues to affect all ancestors * until one is found with remaining children. This may result in a null tree. * <li><code>excise <name1> <name2></code> The name1 node should either dominate * or be the same as the name2 node. This excises out everything from name1 to name2. All * the children of name2 go into the parent of name1, where name1 was. * <li><code>relabel <name> <new-label></code> Relabels the node to have the new * label. <br> * There are three possible forms: <br> * <code>relabel nodeX VP</code> - for changing a node label to an alphanumeric string <br> * <code>relabel nodeX /''/</code> - for relabeling a node to something that isn't a valid * identifier without quoting <br> * <code>relabel nodeX /^VB(.*)$/verb\\/$1/</code> - for regular expression based * relabeling. In this case, all matches of the regular expression against the node label * are replaced with the replacement String. This has the semantics of Java/Perl's * replaceAll: you may use capturing groups and put them in replacements with $n. For * example, if the pattern is /foo/bar/ and the node matched is "foo", the replaceAll * semantics result in "barbar". If the pattern is /^foo(.*)$/bar$1/ and node matched is * "foofoo", relabel will result in "barfoo". <br> * When using the regex replacement method, you can also use the sequences ={node} and * %{var} in the replacement string to use captured nodes or variable strings in the * replacement string. For example, if the Tregex pattern was "duck=bar" and the relabel is * /foo/={bar}/, "foofoo" will be replaced with "duckduck". <br> * To concatenate two nodes named in the tregex pattern, for example, you can use the * pattern /^.*$/={foo}={bar}/. Note that the ^.*$ is necessary to make sure the regex * pattern only matches and replaces once on the entire node name. <br> * To get an "=" or a "%" in the replacement, using \ escaping. Also, as in the example you * can escape a slash in the middle of the second and third forms with \\/ and \\\\. <br> * <li><code>insert <name> <position></code> or <code> * insert <tree> <position></code> inserts the named node or tree into the * position specified. * <li><code>move <name> <position></code> moves the named node into the * specified position. * <p>Right now the only ways to specify position are: * <p><code>$+ <name></code> the left sister of the named node<br> * <code>$- <name></code> the right sister of the named node<br> * <code>>i <name></code> the i_th daughter of the named node<br> * <code>>-i <name></code> the i_th daughter, counting from the right, of the * named node. * <li><code>replace <name1> <name2></code> deletes name1 and inserts a copy of * name2 in its place. * <li><code>replace <name> <tree> <tree2>...</code> deletes name and * inserts the new tree(s) in its place. If more than one replacement tree is given, each of * the new subtrees will be added in order where the old tree was. Multiple subtrees at the * root is an illegal operation and will throw an exception. * <li>{@code createSubtree <new-label> <name1> [<name2>]} Create a subtree out of all the nodes * from {@code <name1>} through {@code <name2>} and puts the new subtree where that span * used to be. To limit the operation to just one node, elide {@code <name2>}. * <li><code>adjoin <auxiliary_tree> <name></code> Adjoins the specified auxiliary * tree into the named node. The daughters of the target node will become the daughters of * the foot of the auxiliary tree. * <li><code>adjoinH <auxiliary_tree> <name></code> Similar to adjoin, but * preserves the target node and makes it the root of <tree>. (It is still accessible * as <code>name</code>. The root of the auxiliary tree is ignored.) * <li><code>adjoinF <auxiliary_tree> <name></code> Similar to adjoin, but * preserves the target node and makes it the foot of <tree>. (It is still accessible * as <code>name</code>, and retains its status as parent of its children. The root of the * auxiliary tree is ignored.) * <li> * <dt><code>coindex <name1> <name2> ... <nameM> </code> Puts a (Penn * Treebank style) coindexation suffix of the form "-N" on each of nodes name_1 through * name_m. The value of N will be automatically generated in reference to the existing * coindexations in the tree, so that there is never an accidental clash of indices across * things that are not meant to be coindexed. * </ul> * * <p>In the context of <code>adjoin</code>, <code>adjoinH</code>, and <code>adjoinF</code>, an * auxiliary tree is a tree in Penn Treebank format with <code>@</code> on exactly one of the * leaves denoting the foot of the tree. The operations which use the foot use the labeled node. * For example: <br> * Tsurgeon: <code>adjoin (FOO (BAR@)) foo</code> <br> * Tregex: <code>B=foo</code> <br> * Input: <code>(A (B 1 2))</code> Output: <code>(A (FOO (BAR 1 2)))</code> * * <p>Tsurgeon applies the same operation to the same tree for as long as the given tregex * operation matches. This means that infinite loops are very easy to cause. One common situation * where this comes up is with an insert operation will repeats infinitely many times unless you * add an expression to the tregex that matches against the inserted pattern. For example, this * pattern will infinite loop: * * <blockquote> * * <code> * TregexPattern tregex = TregexPattern.compile("S=node << NP"); <br> * TsurgeonPattern tsurgeon = Tsurgeon.parseOperation("insert (NP foo) >-1 node"); * </code> * * </blockquote> * * This pattern, though, will terminate: * * <blockquote> * * <code> * TregexPattern tregex = TregexPattern.compile("S=node << NP !<< foo"); <br> * TsurgeonPattern tsurgeon = Tsurgeon.parseOperation("insert (NP foo) >-1 node"); * </code> * * </blockquote> * * <p>Tsurgeon has (very) limited support for conditional statements. If a pattern is prefaced * with <code>if exists <name></code>, the rest of the pattern will only execute if the * named node was found in the corresponding TregexMatcher. * * @param args a list of names of files each of which contains a single tregex matching pattern * plus a list, one per line, of transformation operations to apply to the matched pattern. * @throws Exception If an I/O or pattern syntax error */ public static void main(String[] args) throws Exception { String headFinderClassName = null; String headFinderOption = "-hf"; String[] headFinderArgs = null; String headFinderArgOption = "-hfArg"; String encoding = "UTF-8"; String encodingOption = "-encoding"; if (args.length == 0) { System.err.println( "Usage: java edu.stanford.nlp.trees.tregex.tsurgeon.Tsurgeon [-s] -treeFile <file-with-trees> [-po <matching-pattern> <operation>] <operation-file-1> <operation-file-2> ... <operation-file-n>"); System.exit(0); } String treePrintFormats; String singleLineOption = "-s"; String verboseOption = "-v"; String matchedOption = "-m"; // if set, then print original form of trees that are matched & thus operated on String patternOperationOption = "-po"; String treeFileOption = "-treeFile"; String trfOption = "-trf"; String macroOption = "-macros"; String macroFilename = ""; Map<String, Integer> flagMap = Generics.newHashMap(); flagMap.put(patternOperationOption, 2); flagMap.put(treeFileOption, 1); flagMap.put(trfOption, 1); flagMap.put(singleLineOption, 0); flagMap.put(encodingOption, 1); flagMap.put(headFinderOption, 1); flagMap.put(macroOption, 1); Map<String, String[]> argsMap = StringUtils.argsToMap(args, flagMap); args = argsMap.get(null); if (argsMap.containsKey(headFinderOption)) headFinderClassName = argsMap.get(headFinderOption)[0]; if (argsMap.containsKey(headFinderArgOption)) headFinderArgs = argsMap.get(headFinderArgOption); if (argsMap.containsKey(verboseOption)) verbose = true; if (argsMap.containsKey(singleLineOption)) treePrintFormats = "oneline,"; else treePrintFormats = "penn,"; if (argsMap.containsKey(encodingOption)) encoding = argsMap.get(encodingOption)[0]; if (argsMap.containsKey(macroOption)) macroFilename = argsMap.get(macroOption)[0]; TreePrint tp = new TreePrint(treePrintFormats, new PennTreebankLanguagePack()); PrintWriter pwOut = new PrintWriter(new OutputStreamWriter(System.out, encoding), true); TreeReaderFactory trf; if (argsMap.containsKey(trfOption)) { String trfClass = argsMap.get(trfOption)[0]; trf = ReflectionLoading.loadByReflection(trfClass); } else { trf = new TregexPattern.TRegexTreeReaderFactory(); } Treebank trees = new DiskTreebank(trf, encoding); if (argsMap.containsKey(treeFileOption)) { trees.loadPath(argsMap.get(treeFileOption)[0]); } List<Pair<TregexPattern, TsurgeonPattern>> ops = new ArrayList<Pair<TregexPattern, TsurgeonPattern>>(); TregexPatternCompiler compiler; if (headFinderClassName == null) { compiler = new TregexPatternCompiler(); } else { HeadFinder hf; if (headFinderArgs == null) { hf = ReflectionLoading.loadByReflection(headFinderClassName); } else { hf = ReflectionLoading.loadByReflection(headFinderClassName, (Object[]) headFinderArgs); } compiler = new TregexPatternCompiler(hf); } Macros.addAllMacros(compiler, macroFilename, encoding); if (argsMap.containsKey(patternOperationOption)) { TregexPattern matchPattern = compiler.compile(argsMap.get(patternOperationOption)[0]); TsurgeonPattern p = parseOperation(argsMap.get(patternOperationOption)[1]); ops.add(new Pair<TregexPattern, TsurgeonPattern>(matchPattern, p)); } else { for (String arg : args) { List<Pair<TregexPattern, TsurgeonPattern>> pairs = getOperationsFromFile(arg, encoding, compiler); for (Pair<TregexPattern, TsurgeonPattern> pair : pairs) { if (verbose) { System.err.println(pair.second()); } ops.add(pair); } } } for (Tree t : trees) { Tree original = t.deepCopy(); Tree result = processPatternsOnTree(ops, t); if (argsMap.containsKey(matchedOption) && matchedOnTree) { pwOut.println("Operated on: "); displayTree(original, tp, pwOut); pwOut.println("Result: "); } displayTree(result, tp, pwOut); } }
/** * Run the Evalb scoring metric on guess/gold input. The default language is English. * * @param args */ public static void main(String[] args) { TreebankLangParserParams tlpp = new EnglishTreebankParserParams(); int maxGoldYield = Integer.MAX_VALUE; boolean VERBOSE = false; String encoding = "UTF-8"; String guessFile = null; String goldFile = null; Map<String, String[]> argsMap = StringUtils.argsToMap(args, optionArgDefs); for (Map.Entry<String, String[]> opt : argsMap.entrySet()) { if (opt.getKey() == null) continue; if (opt.getKey().equals("-l")) { Language lang = Language.valueOf(opt.getValue()[0].trim()); tlpp = lang.params; } else if (opt.getKey().equals("-y")) { maxGoldYield = Integer.parseInt(opt.getValue()[0].trim()); } else if (opt.getKey().equals("-v")) { VERBOSE = true; } else if (opt.getKey().equals("-e")) { encoding = opt.getValue()[0]; } else { System.err.println(usage.toString()); System.exit(-1); } // Non-option arguments located at key null String[] rest = argsMap.get(null); if (rest == null || rest.length < minArgs) { System.err.println(usage.toString()); System.exit(-1); } goldFile = rest[0]; guessFile = rest[1]; } tlpp.setInputEncoding(encoding); final PrintWriter pwOut = tlpp.pw(); final Treebank guessTreebank = tlpp.diskTreebank(); guessTreebank.loadPath(guessFile); pwOut.println("GUESS TREEBANK:"); pwOut.println(guessTreebank.textualSummary()); final Treebank goldTreebank = tlpp.diskTreebank(); goldTreebank.loadPath(goldFile); pwOut.println("GOLD TREEBANK:"); pwOut.println(goldTreebank.textualSummary()); final UnlabeledAttachmentEval metric = new UnlabeledAttachmentEval("UAS LP/LR", true, tlpp.headFinder()); final TreeTransformer tc = tlpp.collinizer(); // The evalb ref implementation assigns status for each tree pair as follows: // // 0 - Ok (yields match) // 1 - length mismatch // 2 - null parse e.g. (()). // // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation. final Iterator<Tree> goldItr = goldTreebank.iterator(); final Iterator<Tree> guessItr = guessTreebank.iterator(); int goldLineId = 0; int guessLineId = 0; int skippedGuessTrees = 0; while (guessItr.hasNext() && goldItr.hasNext()) { Tree guessTree = guessItr.next(); List<? extends Label> guessYield = guessTree.yield(); guessLineId++; Tree goldTree = goldItr.next(); List<? extends Label> goldYield = goldTree.yield(); goldLineId++; // Check that we should evaluate this tree if (goldYield.size() > maxGoldYield) { skippedGuessTrees++; continue; } // Only trees with equal yields can be evaluated if (goldYield.size() != guessYield.size()) { pwOut.printf( "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n", goldYield.size(), guessYield.size(), goldLineId, guessLineId); skippedGuessTrees++; continue; } final Tree evalGuess = tc.transformTree(guessTree); evalGuess.indexLeaves(true); final Tree evalGold = tc.transformTree(goldTree); evalGold.indexLeaves(true); metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null)); } if (guessItr.hasNext() || goldItr.hasNext()) { System.err.printf( "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.", guessLineId, goldLineId); } pwOut.println( "================================================================================"); if (skippedGuessTrees != 0) pwOut.printf("%s %d guess trees\n", "Unable to evaluate", skippedGuessTrees); metric.display(true, pwOut); pwOut.println(); pwOut.close(); }
/** Execute with no arguments for usage. */ public static void main(String[] args) { if (!validateCommandLine(args)) { System.err.println(USAGE); System.exit(-1); } final TreebankLangParserParams tlpp = LANGUAGE.params; final PrintWriter pwOut = tlpp.pw(); final Treebank guessTreebank = tlpp.diskTreebank(); guessTreebank.loadPath(guessFile); pwOut.println("GUESS TREEBANK:"); pwOut.println(guessTreebank.textualSummary()); final Treebank goldTreebank = tlpp.diskTreebank(); goldTreebank.loadPath(goldFile); pwOut.println("GOLD TREEBANK:"); pwOut.println(goldTreebank.textualSummary()); final LeafAncestorEval metric = new LeafAncestorEval("LeafAncestor"); final TreeTransformer tc = tlpp.collinizer(); // The evalb ref implementation assigns status for each tree pair as follows: // // 0 - Ok (yields match) // 1 - length mismatch // 2 - null parse e.g. (()). // // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation. final Iterator<Tree> goldItr = goldTreebank.iterator(); final Iterator<Tree> guessItr = guessTreebank.iterator(); int goldLineId = 0; int guessLineId = 0; int skippedGuessTrees = 0; while (guessItr.hasNext() && goldItr.hasNext()) { Tree guessTree = guessItr.next(); List<? extends Label> guessYield = guessTree.yield(); guessLineId++; Tree goldTree = goldItr.next(); List<? extends Label> goldYield = goldTree.yield(); goldLineId++; // Check that we should evaluate this tree if (goldYield.size() > MAX_GOLD_YIELD) { skippedGuessTrees++; continue; } // Only trees with equal yields can be evaluated if (goldYield.size() != guessYield.size()) { pwOut.printf( "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n", goldYield.size(), guessYield.size(), goldLineId, guessLineId); skippedGuessTrees++; continue; } final Tree evalGuess = tc.transformTree(guessTree); final Tree evalGold = tc.transformTree(goldTree); metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null)); } if (guessItr.hasNext() || goldItr.hasNext()) { System.err.printf( "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.", guessLineId, goldLineId); } pwOut.println( "================================================================================"); if (skippedGuessTrees != 0) pwOut.printf("%s %d guess trees%n", "Unable to evaluate", skippedGuessTrees); metric.display(true, pwOut); pwOut.close(); }
/** @param args */ public static void main(String[] args) { if (args.length != 3) { System.err.printf( "Usage: java %s language filename features%n", TreebankFactoredLexiconStats.class.getName()); System.exit(-1); } Language language = Language.valueOf(args[0]); TreebankLangParserParams tlpp = language.params; if (language.equals(Language.Arabic)) { String[] options = {"-arabicFactored"}; tlpp.setOptionFlag(options, 0); } else { String[] options = {"-frenchFactored"}; tlpp.setOptionFlag(options, 0); } Treebank tb = tlpp.diskTreebank(); tb.loadPath(args[1]); MorphoFeatureSpecification morphoSpec = language.equals(Language.Arabic) ? new ArabicMorphoFeatureSpecification() : new FrenchMorphoFeatureSpecification(); String[] features = args[2].trim().split(","); for (String feature : features) { morphoSpec.activate(MorphoFeatureType.valueOf(feature)); } // Counters Counter<String> wordTagCounter = new ClassicCounter<>(30000); Counter<String> morphTagCounter = new ClassicCounter<>(500); // Counter<String> signatureTagCounter = new ClassicCounter<String>(); Counter<String> morphCounter = new ClassicCounter<>(500); Counter<String> wordCounter = new ClassicCounter<>(30000); Counter<String> tagCounter = new ClassicCounter<>(300); Counter<String> lemmaCounter = new ClassicCounter<>(25000); Counter<String> lemmaTagCounter = new ClassicCounter<>(25000); Counter<String> richTagCounter = new ClassicCounter<>(1000); Counter<String> reducedTagCounter = new ClassicCounter<>(500); Counter<String> reducedTagLemmaCounter = new ClassicCounter<>(500); Map<String, Set<String>> wordLemmaMap = Generics.newHashMap(); TwoDimensionalIntCounter<String, String> lemmaReducedTagCounter = new TwoDimensionalIntCounter<>(30000); TwoDimensionalIntCounter<String, String> reducedTagTagCounter = new TwoDimensionalIntCounter<>(500); TwoDimensionalIntCounter<String, String> tagReducedTagCounter = new TwoDimensionalIntCounter<>(300); int numTrees = 0; for (Tree tree : tb) { for (Tree subTree : tree) { if (!subTree.isLeaf()) { tlpp.transformTree(subTree, tree); } } List<Label> pretermList = tree.preTerminalYield(); List<Label> yield = tree.yield(); assert yield.size() == pretermList.size(); int yieldLen = yield.size(); for (int i = 0; i < yieldLen; ++i) { String tag = pretermList.get(i).value(); String word = yield.get(i).value(); String morph = ((CoreLabel) yield.get(i)).originalText(); // Note: if there is no lemma, then we use the surface form. Pair<String, String> lemmaTag = MorphoFeatureSpecification.splitMorphString(word, morph); String lemma = lemmaTag.first(); String richTag = lemmaTag.second(); // WSGDEBUG if (tag.contains("MW")) lemma += "-MWE"; lemmaCounter.incrementCount(lemma); lemmaTagCounter.incrementCount(lemma + tag); richTagCounter.incrementCount(richTag); String reducedTag = morphoSpec.strToFeatures(richTag).toString(); reducedTagCounter.incrementCount(reducedTag); reducedTagLemmaCounter.incrementCount(reducedTag + lemma); wordTagCounter.incrementCount(word + tag); morphTagCounter.incrementCount(morph + tag); morphCounter.incrementCount(morph); wordCounter.incrementCount(word); tagCounter.incrementCount(tag); reducedTag = reducedTag.equals("") ? "NONE" : reducedTag; if (wordLemmaMap.containsKey(word)) { wordLemmaMap.get(word).add(lemma); } else { Set<String> lemmas = Generics.newHashSet(1); wordLemmaMap.put(word, lemmas); } lemmaReducedTagCounter.incrementCount(lemma, reducedTag); reducedTagTagCounter.incrementCount(lemma + reducedTag, tag); tagReducedTagCounter.incrementCount(tag, reducedTag); } ++numTrees; } // Barf... System.out.println("Language: " + language.toString()); System.out.printf("#trees:\t%d%n", numTrees); System.out.printf("#tokens:\t%d%n", (int) wordCounter.totalCount()); System.out.printf("#words:\t%d%n", wordCounter.keySet().size()); System.out.printf("#tags:\t%d%n", tagCounter.keySet().size()); System.out.printf("#wordTagPairs:\t%d%n", wordTagCounter.keySet().size()); System.out.printf("#lemmas:\t%d%n", lemmaCounter.keySet().size()); System.out.printf("#lemmaTagPairs:\t%d%n", lemmaTagCounter.keySet().size()); System.out.printf("#feattags:\t%d%n", reducedTagCounter.keySet().size()); System.out.printf("#feattag+lemmas:\t%d%n", reducedTagLemmaCounter.keySet().size()); System.out.printf("#richtags:\t%d%n", richTagCounter.keySet().size()); System.out.printf("#richtag+lemma:\t%d%n", morphCounter.keySet().size()); System.out.printf("#richtag+lemmaTagPairs:\t%d%n", morphTagCounter.keySet().size()); // Extra System.out.println("=================="); StringBuilder sbNoLemma = new StringBuilder(); StringBuilder sbMultLemmas = new StringBuilder(); for (Map.Entry<String, Set<String>> wordLemmas : wordLemmaMap.entrySet()) { String word = wordLemmas.getKey(); Set<String> lemmas = wordLemmas.getValue(); if (lemmas.size() == 0) { sbNoLemma.append("NO LEMMAS FOR WORD: " + word + "\n"); continue; } if (lemmas.size() > 1) { sbMultLemmas.append("MULTIPLE LEMMAS: " + word + " " + setToString(lemmas) + "\n"); continue; } String lemma = lemmas.iterator().next(); Set<String> reducedTags = lemmaReducedTagCounter.getCounter(lemma).keySet(); if (reducedTags.size() > 1) { System.out.printf("%s --> %s%n", word, lemma); for (String reducedTag : reducedTags) { int count = lemmaReducedTagCounter.getCount(lemma, reducedTag); String posTags = setToString(reducedTagTagCounter.getCounter(lemma + reducedTag).keySet()); System.out.printf("\t%s\t%d\t%s%n", reducedTag, count, posTags); } System.out.println(); } } System.out.println("=================="); System.out.println(sbNoLemma.toString()); System.out.println(sbMultLemmas.toString()); System.out.println("=================="); List<String> tags = new ArrayList<>(tagReducedTagCounter.firstKeySet()); Collections.sort(tags); for (String tag : tags) { System.out.println(tag); Set<String> reducedTags = tagReducedTagCounter.getCounter(tag).keySet(); for (String reducedTag : reducedTags) { int count = tagReducedTagCounter.getCount(tag, reducedTag); // reducedTag = reducedTag.equals("") ? "NONE" : reducedTag; System.out.printf("\t%s\t%d%n", reducedTag, count); } System.out.println(); } System.out.println("=================="); }